Recommendations for Testing, Managing, and Treating Hepatitis C

Downloaded from http://www.hcvguidelines.org

Visit the HCV Guidance website to access the most up-to-date version

Updated: December 11, 2015
Complete revision made to Initial, Retreatment, Monitoring, and Unique Populations (HIV/HCV Coinfection, Cirrhosis, Post-Liver Transplantation, and Renal Impairment) sections on August 7, 2015.
INTRODUCTION

The landscape of treatment for hepatitis C virus (HCV) infection has evolved substantially since the introduction of highly effective HCV protease inhibitor therapies in 2011. The pace of change is expected to increase rapidly, as numerous new drugs with different mechanisms of action will likely become available over the next few years. To provide healthcare professionals with timely guidance as new therapies are available and integrated into HCV regimens, the Infectious Diseases Society of America (IDSA) and American Association for the Study of Liver Diseases (AASLD), in collaboration with the International Antiviral Society–USA (IAS–USA), developed a web-based process for the rapid formulation and dissemination of evidence-based, expert-developed recommendations for hepatitis C management. The IAS–USA provided the structure and assistance to sustain the process that represents the work of leading authorities in hepatitis C prevention, diagnosis, and treatment in adults, from 2013 to 2015.

The AASLD/IDSA Guidance on Hepatitis C addresses management issues ranging from testing and linkage to care, the crucial first steps toward improving health outcomes for HCV-infected persons, to the optimal treatment regimen in particular patient situations. Recommendations are based on evidence and are rapidly updated as new data from peer-reviewed evidence become available. For each treatment option, recommendations reflect the best possible management for a given patient and a given point of disease progression. Recommendations are rated with regard to the level of the evidence and strength of the recommendation. The AASLD/IDSA Guidance on Hepatitis C is supported by the membership-based societies and not by pharmaceutical companies or other commercial interests. The Boards of Directors of AASLD and IDSA have appointed an oversight committee of 5 co-chairs and have selected panel members from the 2 societies.

This Guidance should be considered a "living document" in that the Guidance will be updated frequently as new information and treatments become available. This continually evolving report provides guidance
on FDA-approved regimens. At times, it may also recommend off-label use of certain drugs or tests or provide guidance for regimens not yet approved by FDA. Readers should consult prescribing information and other resources for further information. Of note, the choice of treatment may, in the future, be further guided by data from cost-effectiveness studies.

Changes made on this page on January 14, 2016.

NOTE: Yellow highlighted text indicates recent changes.
METHODS

The Guidance was developed by a panel of HCV experts in the fields of hepatology and infectious diseases, using an evidence-based review of information that is largely available to healthcare practitioners. The process and detailed methods for developing the Guidance are detailed in Methods Table 1 [1]. Recommendations were rated according to the strength of the recommendation and quality of the supporting evidence (see Methods Table 2 [2]). Commonly used abbreviations are expanded in Methods Table 3 [3].
Methods Table 1. Summary of the Process and Methods for the Guidance Development

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Need</td>
<td>Increased awareness of the rising number of complications of hepatitis C virus (HCV) infection, the recent screening initiatives by the Centers for Disease Control and Prevention (CDC) and US Preventive Services Task Force (USPSTF), and the rapid evolution of highly effective antiviral therapy for HCV infection have driven a need for timely guidance on how new developments change practice for health care professionals.</td>
</tr>
<tr>
<td>Goal of the Guidance</td>
<td>The goal of the Guidance is to provide up-to-date recommendations to health care practitioners on the optimal screening, management, and treatment for adults with HCV infection in the United States, considering the best available evidence. The Guidance is updated regularly, as new data, information, and tools and treatments become available.</td>
</tr>
<tr>
<td>Panel members</td>
<td>Panel members are chosen based on their expertise in the diagnosis, management, and treatment of HCV infection. Members from the fields of hepatology and infectious diseases are included, as well as HCV community representatives. Members were appointed by the respective Sponsor Societies after vetting by an appointed Sponsor Society committee. The Panel chairs are appointed by the Society boards, 2 each from the Sponsor Societies and 1 representing the collaborating partner [1]. All Panel chairs and members serve as volunteers (not compensated) for defined terms (2-3 years), which may be renewed based on panel needs.</td>
</tr>
</tbody>
</table>
Conflict of interest management

The panel was established with the goal of having no personal (ie, direct payment to the individual) financial conflicts of interest among its chairs and among fewer than half of its panel members. All potential panel members are asked to disclose any personal relationship with a pharmaceutical, biotechnology, medical device, or health-related company or venture that may result in financial benefit. Disclosures are obtained prior to the panel member appointments and for 1 year prior to the initiation of the work of the panel. Full transparency of potential financial conflicts is an important goal for the guidance that best ensures the credibility of the processed and the recommendations.

Individuals are also asked to disclose funding of HCV-related research activities to their institutional division, department, or practice group. Disclosures are reviewed by the HCV Guidance Chairs, who make assessments based on the conflict-of-interest policies of the sponsoring organizations (AASLD and IDSA) and the collaborative partner [1]. Personal and institutional financial relationships with commercial entities that have products in the field of hepatitis C are assessed.

The following relationships are prohibited during membership on the guidance panel and are grounds for exclusion from the panel:

- Employment with any commercial company with products in the field of hepatitis C.
- An ownership interest in a commercial entity that produces hepatitis C products.
- Participation in/promotion for marketing activities sponsored by companies with HCV-related products including non-CME educational activities or speakers bureaus for audiences outside of the company.

The following relationships or activities are reportable but were not deemed to merit exclusion:

- Commercial support of research that is paid to an organization or practice group. Due to the rapidly evolving nature of the subject matter, having individuals with expertise in the particular clinical topic is crucial to developing the highest-quality and most-informed recommendations. To that end, research support from commercial entities is not considered grounds for panel exclusion (an unresolvable conflict) if the funding of the research was paid to the institution or practice group, as opposed to the individual. In the instance of someone conducting clinical research in a community practice, research funds to the group practice were acceptable.
- Participation on commercial company scientific advisory boards. Participation in advisory boards, data safety monitoring boards, or in consultancies sponsored by the research arm of a company (eg, study design or data safety monitoring board) is considered a potential personal conflict but is not considered a criterion for exclusion.

The HCV Guidance Chairs achieved a majority of panel members with no personal financial interests.

Panel members are asked to inform the group of any changes to their disclosure status and are given the opportunity to recuse themselves (or be recused) from the discussion where a perceived conflict of interest that cannot be resolved exists.

Financial disclosures for each Panel member can be accessed [here](#) [2].

Intended Audience

Medical practitioners especially those who provide care to or manage patients with hepatitis C.
Sponsors, funding, and collaborating partner	The American Association for the Study of Liver Diseases (AASLD) and the Infectious Diseases Society of America (IDSA) are the sponsors of the Guidance and provide ongoing financial support. The International Antiviral Society-USA (IAS-USA) is the Collaborating Partner responsible for managing the Panel and the Guidance development process. Grant support was sought and obtained from the Centers for Disease Control and Prevention (CDC) for the initial gathering and review of evidence related to hepatitis C screening and testing recommendations and interventions to implement HCV screening in clinical settings.
Evidence identification and collection	The Guidance is developed using an evidence-based review of information that is largely available to health care practitioners. Data from the following sources are considered by Panel members when making recommendations: research published in the peer-reviewed literature or presented at major national or international scientific conferences; safety warnings from the US Food and Drug Administration (FDA) or other regulatory agencies or from manufacturers; drug interaction data; prescribing information from FDA-approved products; and registration data for new products under FDA review. Press releases, unpublished reports, and personal communications are generally not considered. Literature searches are conducted regularly and before each major revision to ensure that the Panel addresses all relevant published data. Medical subject headings and free text terms are combined to maximize retrieval of relevant citations from the PubMed, Scopus, EMBASE, and Web of Science databases. To be considered for inclusion, articles were required to have been published in English from 2010 to the present. Data from abstracts presented at national or international scientific conferences are also considered.
Rating of the evidence and RECOMMENDATIONS	The Guidance is presented in the form of RECOMMENDATIONS. Each RECOMMENDATION is rated in terms of the level of the evidence and strength of the recommendation, using a modification of the scale adapted from the American College of Cardiology and the American Heart Association Practice Guidelines. (American Heart Association, 2014 [3]); (Shiffman, 2003 [4]) A summary of the supporting (and conflicting) evidence follows each RECOMMENDATION or set of RECOMMENDATIONS.
Data review and synthesis and preparation of RECOMMENDATIONS and supporting information	Draft RECOMMENDATIONS are developed by subgroups of the full Panel with interest and expertise in particular sections of the Guidance. Following development of supporting text and references, the sections are reviewed by the full Panel and Chairs. A penultimate draft is submitted to the AASLD and IDSA Governing Boards for final review and approval before posting online on the website, www.hcvguidelines.org [5]. Subgroups of the Panel meet regularly by conference call as needed to update RECOMMENDATIONS and supporting evidence. Updates may be prompted by new publications or presentations at major national or international scientific conferences, new drug approvals (or new indications, dosing formulations, or frequency of dosing), new safety warnings, or other information that may have a substantial impact on the clinical care of patients. Updates and changes in the Guidance are indicated by highlighted text on the online site and a notice of update is posted on the Home Page.
Abbreviations	Commonly used abbreviations in the text with their expansions are listed in Methods Table 3 [6].
Opportunity for Comments	Evidence-based comments may be submitted to the Panel by email to styenes@aasld.org [7], or by clicking on the “Send a comment to the Panel” button on www.hcvguidelines.org/contact-us [8]. The Panel considers evidence-based comments about the RECOMMENDATIONS, ratings, and evidence summary but should not be contacted for individual patient management questions.
Methods Table 2. Rating System Used to Rate the Level of the Evidence and Strength of the Recommendation for Each Recommendation

Recommendations are based on scientific evidence and expert opinion. Each recommended statement includes a Roman numeral (I, II, or III) that represents the level of the evidence that supports the recommendation, and a letter (A, B, or C) that represents the strength of the recommendation.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Conditions for which there is evidence and/or general agreement that a given diagnostic evaluation, procedure, or treatment is beneficial, useful, and effective</td>
</tr>
<tr>
<td>Class II</td>
<td>Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness and efficacy of a diagnostic evaluation, procedure, or treatment</td>
</tr>
<tr>
<td>Class IIa</td>
<td>Weight of evidence and/or opinion is in favor of usefulness and efficacy</td>
</tr>
<tr>
<td>Class IIb</td>
<td>Usefulness and efficacy are less well established by evidence and/or opinion</td>
</tr>
<tr>
<td>Class III</td>
<td>Conditions for which there is evidence and/or general agreement that a diagnostic evaluation, procedure, or treatment is not useful and effective or if it in some cases may be harmful</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level A*</td>
<td>Data derived from multiple randomized clinical trials, meta-analyses, or equivalent</td>
</tr>
<tr>
<td>Level B*</td>
<td>Data derived from a single randomized trial, nonrandomized studies, or equivalent</td>
</tr>
<tr>
<td>Level C</td>
<td>Consensus opinion of experts, case studies, or standard of care</td>
</tr>
</tbody>
</table>
Adapted from the American College of Cardiology and the American Heart Association Practice Guidelines. (American Heart Association, 2011) [1]; (Shiffman, 2003 [2])

*In some situations, such as for IFN-sparing HCV treatments, randomized clinical trials with an existing standard-of-care arm cannot ethically or practicably be conducted. The US Food and Drug Administration (FDA) has suggested alternative study designs, including historical controls or immediate versus deferred, placebo-controlled trials. For additional examples and definitions see FDA link: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM225333.pdf [3]. In those instances for which there was a single pre-determined, FDA-approved equivalency established, panel members considered the evidence as equivalent to a randomized controlled trial for levels A or B.
Methods Table 3. Commonly Used Abbreviations and Their Expansions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Expansion or Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV</td>
<td>hepatitis C virus. In this Guidance "hepatitis C virus" and HCV refer to the virus. Hepatitis C and HCV infection or HCV disease refer to the resulting disease.</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon alfa</td>
</tr>
<tr>
<td>PEG</td>
<td>peginterferon alfa</td>
</tr>
</tbody>
</table>

These terms are not expanded in text

These terms are expanded at first mention in text
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>BOC</td>
<td>boceprevir</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood cell (eg, complete blood cell count)</td>
</tr>
<tr>
<td>CrCl</td>
<td>creatinine clearance</td>
</tr>
<tr>
<td>CTP</td>
<td>Child Turcotte Pugh (see below)</td>
</tr>
<tr>
<td>DAA</td>
<td>direct-acting antiviral</td>
</tr>
<tr>
<td>ESRD</td>
<td>end-stage renal disease</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>HBsAg</td>
<td>hepatitis B virus surface antigen</td>
</tr>
<tr>
<td>HBV</td>
<td>hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>IDU</td>
<td>injection drug use or user</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>MELD</td>
<td>model for end-stage liver disease</td>
</tr>
<tr>
<td>MSM</td>
<td>men who have sex with men</td>
</tr>
<tr>
<td>NAT</td>
<td>nucleic acid testing</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>OATP</td>
<td>organic anion-transporting polypeptide</td>
</tr>
<tr>
<td>P-gp</td>
<td>p-glycoprotein</td>
</tr>
<tr>
<td>PrOD</td>
<td>paritaprevir/ritonavir/ombitasvir plus dasabuvir</td>
</tr>
<tr>
<td>RAV</td>
<td>resistance-associated variant</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell (eg, red blood cell count)</td>
</tr>
<tr>
<td>RBV</td>
<td>ribavirin</td>
</tr>
<tr>
<td>RGT</td>
<td>response-guided therapy</td>
</tr>
<tr>
<td>RVR</td>
<td>rapid virologic response</td>
</tr>
<tr>
<td>sAg</td>
<td>surface antigen</td>
</tr>
<tr>
<td>SMV</td>
<td>simeprevir; used for the treatment of those with genotype 1 of hepatitis C virus (HCV) who have compensated liver disease, including cirrhosis</td>
</tr>
<tr>
<td>SOF</td>
<td>sofosbuvir; a nucleoside analogue used in combination with other drugs for the treatment of HCV infection</td>
</tr>
<tr>
<td>SVR12 (or 24 or 48, etc)</td>
<td>sustained virologic response at 12 weeks (or at 24 weeks, or at 48 weeks, etc)</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid-stimulating hormone</td>
</tr>
<tr>
<td>TVR</td>
<td>telaprevir; an antiviral agent to treat hepatitis C</td>
</tr>
</tbody>
</table>
Definition of Terms

Child Turcotte Pugh (CTP) classification of the severity of cirrhosis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total points</td>
<td>5–6</td>
<td>7–9</td>
<td>10–15</td>
</tr>
<tr>
<td>Factor</td>
<td>1 Point</td>
<td>2 Points</td>
<td>3 Points</td>
</tr>
<tr>
<td>Total bilirubin (µmol/L)</td>
<td><34</td>
<td>34–50</td>
<td>>50</td>
</tr>
<tr>
<td>Serum albumin (g/L)</td>
<td>>35</td>
<td>28–35</td>
<td><28</td>
</tr>
<tr>
<td>Prothrombin time/international normalized ratio</td>
<td><1.7</td>
<td>1.71–2.30</td>
<td>>2.30</td>
</tr>
<tr>
<td>Ascites</td>
<td>None</td>
<td>Mild</td>
<td>Moderate to Severe</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>None</td>
<td>Grade I–II (or suppressed with medication)</td>
<td>Grade III–IV (or refractory)</td>
</tr>
</tbody>
</table>

IFN ineligible

IFN ineligible is defined as one or more of the below:
- Intolerance to IFN
- Autoimmune hepatitis and other autoimmune disorders
- Hypersensitivity to PEG or any of its components
- Decompensated hepatic disease
- Major uncontrolled depressive illness
- A baseline neutrophil count below 1500/µL, a baseline platelet count below 90,000/µL or baseline hemoglobin below 10 g/dL
- A history of preexisting cardiac disease

Relapser

A person who has achieved an undetectable level of virus during a prior treatment course of PEG/RBV and relapsed after treatment was stopped.
HCV TESTING AND LINKAGE TO CARE

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

A summary of recommendations for Testing and Linkage to Care is found in the BOX [2].

One-time HCV testing is recommended for persons born between 1945 and 1965,* without prior ascertainment of risk.

Rating: Class I, Level B

Other persons should be screened for risk factors for HCV infection, and one-time testing should be performed for all persons with behaviors, exposures, and conditions associated with an increased risk of HCV infection.

1. Risk behaviors
 - Injection-drug use (current or ever, including those who injected once)
 - Intranasal illicit drug use

2. Risk exposures
 - Long-term hemodialysis (ever)
 - Getting a tattoo in an unregulated setting
 - Healthcare, emergency medical, and public safety workers after needlesticks, sharps, or mucosal exposures to HCV-infected blood
 - Children born to HCV-infected women
 - Prior recipients of transfusions or organ transplants, including persons who:
 - were notified that they received blood from a donor who later tested positive for HCV infection
 - received a transfusion of blood or blood components, or underwent an organ transplant before July 1992
 - received clotting factor concentrates produced before 1987
 - Persons who were ever incarcerated

3. Other
HIV infection
- Unexplained chronic liver disease and chronic hepatitis including elevated alanine aminotransferase levels
- Solid organ donors (deceased and living)

Rating: Class I, Level B
*Regardless of country of birth

Of the estimated 2.2 to 3.2 million persons (2003 to 2010 National Health and Nutrition Examination Survey of the US noninstitutionalized civilian population) (Denniston, 2014 [3]) chronically infected with HCV in the United States, approximately 50% are unaware that they are infected. (Denniston, 2012 [4]) Identification of those with active infection is the first step toward improving health outcomes among persons with HCV infection and preventing transmission. (Smith, 2012 [5]): (US Preventive Services Task Force, 2013 [6]); (Centers for Disease Control and Prevention, 1998 [7])

HCV testing is recommended in select populations based on demography, prior exposures, high-risk behaviors, and medical conditions. Recommendations for testing are based on HCV prevalence in these populations, proven benefits of care and treatment in reducing the risk of hepatocellular carcinoma and all-cause mortality, and the potential public health benefit of reducing transmission through early treatment, viral clearance, and reduced risk behaviors. (Smith, 2012 [5]): (US Preventive Services Task Force, 2013 [6]); (Centers for Disease Control and Prevention, 1998 [7])

HCV is primarily transmitted through percutaneous exposure to blood. Other modes of transmission include mother-to-infant and contaminated devices shared for noninjection drug use; sexual transmission also occurs but generally seems to be inefficient except among HIV-infected men who have unprotected sex with men. (Schmidt, 2014 [8]) The most important risk for HCV infection is injection drug use, accounting for at least 60% of acute HCV infections in the United States. Health care exposures are important sources of transmission, including the receipt of blood products before 1992 (after which routine screening of blood supply was implemented), receipt of clotting factor concentrates before 1987, long-term hemodialysis, needlestick injuries among healthcare workers, and patient-to-patient transmission resulting from poor infection control practices. Other risk factors include having been born to an HCV-infected mother, having been incarcerated, and having received a tattoo in an unregulated setting. The importance of these risk factors might differ based on geographic location and population. (US Preventive Services Task Force, 2013 [6]); (Centers for Disease Control and Prevention, 1998 [7]). An estimated 29% of incarcerated persons in North America are anti-HCV positive, supporting the recommendation to test this population for HCV. (Larney, 2013 [9]) Because of shared transmission modes, persons with HIV infection are at risk for HCV; sexual transmission is a particular risk for HIV-infected men who have unprotected sex with men. (Hosein, 2013 [10]; (van de Laar, 2010 [11]) Recent data also support testing in all deceased and living solid-organ donors because of the risk of HCV infection posed to the recipient. (Seem, 2013 [12]); (Lai, 2013 [13]) Although Centers for Disease Control and Prevention (CDC) and US Preventive Services Task Force hepatitis C testing guidelines do not specifically recommend testing immigrants from countries with a high prevalence (eg, Egypt or Pakistan) of hepatitis C virus infection, such persons should be tested if they were born from 1945 through 1965 or if they have risk factors (listed in Summary Box) for infection.

In 2012, CDC expanded its guidelines originally issued in 1998 (Centers for Disease Control and
Prevention, 1998 (71) for risk-based HCV testing with a recommendation to offer a 1-time (see Summary Box) HCV test to all persons born from 1945 through 1965, without prior ascertainment of HCV risk-factors. This recommendation was supported by evidence demonstrating that a risk-based strategy alone failed to identify more than 50% of HCV infections in part due to patient underreporting of their risk and provider limitations in ascertaining risk-factor information. Furthermore, persons in the 1945 to 1965 birth cohort accounted for nearly three-fourths of all HCV infections, with a 5-times higher prevalence (3.25%) than other persons, reflecting a higher incidence of HCV infections in the 1970s and 1980s (peaking at 230,000, compared with 15,000 in 2009). A recent retrospective review showed that 68% of persons with HCV infection would have been identified through a birth cohort testing strategy, whereas only 27% would have been screened with the risk-based approach. (Mahajan, 2013 [14]) The cost-effectiveness of 1-time birth cohort testing is comparable to that of current risk-based screening strategies. (Smith, 2012 [5])

CDC and the US Preventive Services Task Force (USPSTF) both recommend a 1-time HCV test in asymptomatic persons belonging to the 1945 to 1965 birth cohort and other persons based on exposures, behaviors, and conditions that increase risk for HCV infection.

Annual HCV testing is recommended for persons who inject drugs and for HIV-seropositive men who have unprotected sex with men. Periodic testing should be offered to other persons with ongoing risk factors for exposure to HCV.

Rating: Class IIA, Level C

Evidence regarding the frequency of testing in persons at risk for ongoing exposure to HCV is lacking; therefore, clinicians should determine the periodicity of testing based on the risk of reinfection. Because of the high incidence of HCV infection among persons who inject drugs and among HIV-infected MSM who have unprotected sex (Aberg, 2013 [15]); (Linas, 2012 [16]); (Wandeler, 2012 [17]); (Witt, 2013 [18]); (Bravo, 2012 [19]); (Williams, 2011 [20]), at least annual HCV testing is recommended in these subgroups.

Implementation of clinical decision support tools or prompts for HCV testing in electronic health records could facilitate reminding clinicians of HCV testing when indicated. (Hsu, 2013 [21]); (Litwin, 2012 [22]); (http://nvhr.org/EMR [23])

An anti-HCV test is recommended for HCV testing, and if the result is positive, current infection should be confirmed by a sensitive HCV RNA test.

Rating: Class I, Level A

Among persons with a negative anti-HCV test who are suspected of having liver disease, testing for HCV RNA or follow-up testing for HCV
antibody is recommended if exposure to HCV occurred within the past 6 months; testing for HCV RNA can also be considered in persons who are immunocompromised.

Rating: Class I, Level C

Among persons at risk of reinfection after previous spontaneous or treatment-related viral clearance, initial HCV-RNA testing is recommended because an anti-HCV test is expected to be positive.

Rating: Class I, Level C

Quantitative HCV RNA testing is recommended prior to the initiation of antiviral therapy to document the baseline level of viremia (ie, baseline viral load).

Rating: Class I, Level A

Testing for HCV genotype is recommended to guide selection of the most appropriate antiviral regimen.

Rating: Class I, Level A

If found to have positive results for anti-HCV test and negative results for HCV RNA by polymerase chain reaction (PCR), persons should be informed that they do not have evidence of current (active) HCV infection.

Rating: Class I, Level A

All persons recommended for HCV testing should first be tested for HCV antibody (anti-HCV) ([Centers for Disease Control and Prevention [CDC], 2013](#24); [Alter, 2003](#25)) using an FDA-approved test. FDA-approved tests include laboratory-based assays and a point-of-care assay (ie, OraQuick HCV Rapid Antibody Test [OraSure Technologies]). ([Lee, 2011](#26)) The latter is an indirect immunoassay with a sensitivity and specificity similar to those of FDA-approved laboratory-based HCV antibody assays.

A positive test result for anti-HCV indicates either current (active) HCV infection (acute or chronic), past infection that has resolved, or a false-positive test result. ([Pawlotsky, 2002](#27)) Therefore, an HCV nucleic acid test (NAT) to detect viremia is necessary to confirm current (active) HCV infection and guide clinical management, including initiation of HCV treatment. HCV RNA testing should also be performed in persons with a negative anti-HCV test who are either immunocompromised (eg, persons receiving chronic hemodialysis) ([KDIGO, 2008](#28)) or who might have been exposed to HCV within the last 6 months because these persons may be anti-HCV negative. An HCV RNA test is also needed to detect reinfection in anti-HCV-positive persons after previous spontaneous or treatment-related viral clearance.

An FDA-approved quantitative or qualitative NAT with a detection level of 25 IU/mL or lower should be
used to detect HCV RNA. **Testing and Linkage to Care Table 1** [29] lists FDA-approved, commercially available anti-HCV screening assays. **Testing and Linkage to Care Figure 1** [30] shows the CDC-recommended testing algorithm.

Persons who have positive results for an anti-HCV test and negative results for HCV RNA by polymerase chain reaction (PCR) should be informed that they do not have laboratory evidence of current (active) HCV infection. Additional HCV testing is typically unnecessary. The HCV RNA test can be repeated when there is a high index of suspicion for recent infection or in patients with ongoing risk factors for HCV infection.

Practitioners or persons may seek additional testing to learn if the HCV antibody test represents a remote HCV infection that has resolved or a false-positive result. For patients with no apparent risk for HCV infection, the likelihood of a false-positive HCV antibody test is directly related to the HCV prevalence in the tested population; false-positive test results for anti-HCV are most common for populations with a low prevalence of HCV infection. (Alter, 2003 [25]) If further testing is desired to distinguish between true positivity and biologic false positivity for HCV antibody, testing may be done with a second FDA-approved HCV antibody assay that is different from the assay used for initial antibody testing. A biologic false result should not occur with 2 different tests. (Vermeersch, 2008 [31]); (Centers for Disease Control and Prevention [CDC], 2013 [24]) Prior to the initiation of HCV therapy, quantitative HCV RNA testing may be used to determine the baseline level of viremia (ie, viral load) in order to define the duration of treatment for certain regimens. The degree of viral load decline after initiation of treatment is less predictive of sustained virologic response in the era of direct-acting antiviral therapy (see section on Pretreatment and On-Treatment Monitoring [32]). Testing for HCV genotype helps to guide selection of the most appropriate treatment regimen.

Persons with current (active) HCV infection should receive education and interventions aimed at reducing progression of liver disease and preventing transmission of HCV.

Rating: Class Ila, Level B

1. Abstinence from alcohol and, when appropriate, interventions to facilitate cessation of alcohol consumption should be advised for all persons with HCV infection. **Rating:** Class Ila, Level B
2. Evaluation for other conditions that may accelerate liver fibrosis, including HBV and HIV infections, is recommended for all persons with HCV infection. **Rating:** Class Iib, Level B
3. Evaluation for advanced fibrosis using liver biopsy, imaging, or noninvasive markers is recommended for all persons with HCV infection, to facilitate an appropriate decision regarding HCV treatment strategy and to determine the need for initiating additional measures for the management of cirrhosis (eg, hepatocellular carcinoma screening). **Rating:** Class I, Level B
4. Vaccination against hepatitis A and hepatitis B is recommended for all susceptible persons with HCV infection. **Rating:** Class Ila, Level C
5. All persons with HCV infection should be provided education on how to avoid HCV transmission to others. **Rating:** Class I, Level C
In addition to receiving therapy, HCV-infected persons should be educated about how to prevent further damage to their liver. Most important is prevention of the potential deleterious effect of alcohol. Numerous studies have found a strong association between the use of excess alcohol and the development or progression of liver fibrosis and the development of hepatocellular carcinoma. (Poynard, 1997 [33]); (Harris, 2001 [34]); (Wiley, 1998 [35]); (Corrao, 1998 [36]); (Bellentani, 1999 [37]); (Noda, 1996 [38]); (Safdar, 2004 [39])

The daily consumption of more than 50 grams of alcohol has a high likelihood of worsening fibrosis. Some studies indicate that daily consumption of smaller amounts of alcohol also has a deleterious effect on the liver; however, these data are controversial. (Westin, 2002 [40]) Excess alcohol intake may also cause steatohepatitis. Alcohol screening and brief interventions such as those outlined by the National Institute of Alcohol Abuse and Alcoholism (http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/clinicians_guide.htm [41]) have been demonstrated to reduce alcohol consumption and episodes of binge drinking in the general population and among HCV-infected persons who consume alcohol heavily. (Whitlock, 2004 [42]); (Dieperink, 2010 [43]); (Proeschold-Bell, 2012 [44]) Persons identified as abusing alcohol and having alcohol dependence require treatment and consideration for referral to an addiction specialist.

HBV and HIV coinfection have been associated with poorer prognosis of HCV in cohort studies. (Thein, 2008a [45]); (Zarski, 1998 [46]) Owing to overlapping risk factors for these infections and additional benefits of their identification and treatment, persons with HCV should be tested for HIV antibody and hepatitis B surface antigen (HBsAg) using standard assays for screening (Moyer, 2013 [47]); (Centers for Disease Control and Prevention, 2008 [48]) (http://www.aafp.org/afp/2008/0315/p819.html [49] and http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5708a1.htm [50]) and counseled on how to reduce their risk of acquiring these infections, including through HBV vaccination (see below).

Patients with obesity and metabolic syndrome having underlying insulin resistance are more prone to have nonalcoholic fatty liver disease, which is a risk factor for fibrosis progression in HCV-infected persons. (Hourigan, 1999 [51]); (Ortiz, 2002 [52]) Therefore, HCV-infected persons who are overweight or obese (defined by a body mass index 25 kg/m² or higher or 30 kg/m² or higher, respectively) should be counseled regarding strategies to reduce weight and improve insulin resistance via diet, exercise, and medical therapies. (Musso, 2010 [53]); (Shaw, 2006 [54]) Patients with HCV infection and hyperlipidemia or cardiovascular comorbidities may also benefit from various hypolipidemic drugs. Prospective studies have demonstrated the safety and efficacy of statins in patients with chronic HCV and others with compensated chronic liver disease. (Lewis, 2007 [55]) Therefore, these agents should not be withheld in HCV-infected patients.

The severity of liver disease associated with chronic HCV infection is a key factor in determining the initial and follow-up evaluation of patients. Although patients with more advanced disease may have a lower response to HCV therapy, they are also most likely to derive the greatest survival benefit. (Ghany, 2011 [56]) A liver biopsy can provide objective, semiquantitative information regarding the amount and pattern of collagen or scar tissue in the liver that can assist with treatment and monitoring plans. The Metavir fibrosis score (F0-F4) and Ishak fibrosis score (0-6) are commonly used to score the amount of hepatic collagen. A liver biopsy can also help assess the severity of liver inflammation, or of hepatic steatosis, and help exclude competing causes of liver injury. (Kleiner, 2005 [57]) However, the procedure has a low but real risk of complications, and sampling artifact makes its serial use in most patients less
desirable. (Regev, 2002) Noninvasive methods frequently used to estimate liver disease severity include a liver-directed physical exam (normal in most patients), routine blood tests (eg, serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST], albumin, bilirubin, international normalized ratio levels, and complete blood cell counts with platelets), serum fibrosis marker panels, liver imaging (eg, ultrasound, computed tomography scan), and transient elastography. Simple blood tests (eg, serum AST-to-platelet ratio index [APRI]) (Wai, 2003) and assessment of liver surface nodularity and spleen size by liver ultrasound or other cross-sectional imaging modalities can help determine if patients with HCV have occult portal hypertension, which is associated with a greater likelihood of developing future hepatic complications in untreated patients. (Chou, 2013); (Rockey, 2006) Liver elastography can provide instant information regarding liver stiffness at the point of care and can reliably distinguish patients with a high versus low likelihood of cirrhosis. (Castera, 2012); (Bonder, 2014) Because persons with known or suspected bridging fibrosis and cirrhosis are at increased risk of developing complications of advanced liver disease, they require more frequent follow-up; these persons should also avoid hepatotoxic drugs (eg, excessive acetaminophen [ie, ≥2 g/d] or certain herbal supplements) or nephrotoxic drugs (eg, nonsteroidal antiinflammatory drugs) and receive ongoing imaging surveillance for liver cancer and gastroesophageal varices. (Sangiovanni, 2006); (Fontana, 2010)

Exposure to infected blood is the primary mode of HCV transmission. HCV-infected persons must be informed of the precautions needed to avoid exposing others to infected blood. This is particularly important for persons who use injection drugs, given that HCV transmission in this population primarily results from the sharing of needles and other infected implements. Recently, epidemics of acute HCV due to sexual transmission in HIV-infected men who have sex with men have also been described. (van de Laar, 2009); (Urbanus, 2009); (Fierer, 2008) Testing and Linkage to Care Table 2 outlines measures to avoid HCV transmission. HCV is not spread by sneezing, hugging, holding hands, coughing, or sharing eating utensils or drinking glasses, nor is it transmitted through food or water.

Evaluation by a practitioner who is prepared to provide comprehensive management, including consideration of antiviral therapy, is recommended for all persons with current (active) HCV infection.

Rating: Class IIa, Level C

The definition of evaluation is: **Patient has attended a medical care visit with a practitioner able to complete a full assessment, the pros and cons of antiviral therapy have been discussed, and the patient has been transitioned into treatment, if appropriate.**

Improvement in identification of current (active) HCV infection and advances in treatment regimens will have limited impact on HCV-related morbidity and mortality without concomitant improvement in linkage to care. All patients with current HCV infection and a positive HCV RNA test result, should be evaluated by a practitioner with expertise in assessment of liver disease severity and HCV treatment. Subspecialty care and consultation are required for persons with HCV infection who have advanced fibrosis or cirrhosis (stage F3 or above on Metavir scale), including possible referral for consideration of liver transplantation. In the United States, only an estimated 13% to 18% of HCV-infected persons receive treatment.
Lack of appropriate practitioner assessment and delays in linkage to care can result in negative health outcomes. Further, patients who are lost to follow-up fail to benefit from evolving evaluation and treatment options.

Commonly cited patient-related barriers to treatment initiation include contraindications to treatment (eg, medical or psychiatric comorbidities), lack of acceptance of treatment (eg, asymptomatic nature of disease, competing priorities, low treatment efficacy, and long treatment duration and adverse effects), and lack of access to treatment (eg, cost and distance to specialist). Common practitioner-related barriers include perceived patient-related barriers (eg, fear of adverse effects, treatment duration, cost, and effectiveness), lack of expertise in HCV treatment, lack of specialty referral resources, resistance to treating persons currently using illicit drugs or alcohol, and concern about cost of HCV treatment. Data are lacking to support exclusion of HCV-infected persons from considerations for hepatitis C therapy based on the amount of alcohol intake or the use of illicit drugs. Based on data from IFN-based treatment, SVR rates among people who inject drugs are comparable to those among people who do not inject drugs. Some possible strategies to address these barriers are listed in Table 3. One strategy that addresses several barriers is colocalization or integrated care of HCV screening, evaluation, and treatment with other medical or social services. Colocalization has already been applied to settings with a high prevalence of HCV infection (eg, correctional facilities and programs providing needle exchange, substance abuse treatment, and methadone maintenance) but is not uniformly available.

A strategy that addresses lack of access to specialists (a primary barrier to hepatitis C care) is participation in models involving close collaboration between primary care practitioners and subspecialists. Such collaborations have used teledicine and knowledge networks to overcome geographic distances to specialists. For example, Project ECHO (Extension for Community Healthcare Outcomes) uses videoconferencing to enhance primary care practitioner capacity in rendering HCV care and treatment to New Mexico's large rural and underserved population. Through case-based learning and real-time feedback from a multidisciplinary team of specialists (ie, gastroenterology, infectious diseases, pharmacology, and psychiatry practitioners), Project ECHO has expanded access to HCV infection treatment in populations that might have otherwise remained untreated. The short duration of therapy and few serious adverse events related to the new hepatitis C medications present an opportunity to expand the number of mid-level practitioners and primary care physicians in the management and treatment of HCV infection.

Additional strategies for enhancing linkage to and retention in care could be adapted from other fields, such as tuberculosis and HIV. For example, use of directly observed therapy has enhanced adherence to tuberculosis treatment, and use of case managers and patient navigators has reduced loss of follow-up in HIV care. Recent hepatitis C test and care programs have identified the use of patient navigators or care coordinators to be an important intervention in overcoming challenges to linkage to and retention in care. Ongoing assessment of efficacy and comparative effectiveness of this and additional strategies is a crucial area of future research for patients with HCV infection. Replication and expansion of best practices and new models for linkage to HCV care will also be crucial to maximize the public health impact of newer treatment paradigms.

Changes made on June 28, 2015.
One-time HCV testing is recommended at for persons born between 1945 and 1965,* without prior ascertainment of risk.

Rating: Class I, Level B

Other persons should be screened for risk factors for HCV infection, and one-time testing should be performed for all persons with behaviors, exposures, and conditions associated with an increased risk of HCV infection.

1. Risk behaviors
 - Injection-drug use (current or ever, including those who injected once)
 - Intranasal illicit drug use

2. Risk exposures
 - Long-term hemodialysis (ever)
 - Getting a tattoo in an unregulated setting
 - Healthcare, emergency medical, and public safety workers after needlesticks, sharps, or mucosal exposures to HCV-infected blood
 - Children born to HCV-infected women
 - Prior recipients of transfusions or organ transplants, including persons who:
 - were notified that they received blood from a donor who later tested positive for HCV infection
 - received a transfusion of blood or blood components, or underwent an organ transplant before July 1992
 - received clotting factor concentrates produced before 1987
 - Persons who were ever incarcerated

3. Other
 - HIV infection
- Unexplained chronic liver disease and chronic hepatitis including elevated alanine aminotransferase levels
- Solid organ donors (deceased and living)

Rating: Class I, Level B

Regardless of country of birth

Annual HCV testing is recommended for persons who inject drugs and for HIV-seropositive men who have unprotected sex with men. Periodic testing should be offered to other persons with ongoing risk factors for exposure to HCV.

Rating: Class IIA, Level C

An anti-HCV test is recommended for HCV testing, and if the result is positive, current infection should be confirmed by a sensitive HCV RNA test.

Rating: Class I, Level A

Among persons with a negative anti-HCV test who are suspected of having liver disease, testing for HCV RNA or follow-up testing for HCV antibody is recommended if exposure to HCV occurred within the past 6 months; testing for HCV RNA can also be considered in persons who are immunocompromised.

Rating: Class I, Level C

Among persons at risk of reinfection after previous spontaneous or treatment-related viral clearance, initial HCV-RNA testing is recommended because an anti-HCV test is expected to be positive.

Rating: Class I, Level C

Quantitative HCV RNA testing is recommended prior to the initiation of antiviral therapy to document the baseline level of viremia (ie, baseline viral load).

Rating: Class I, Level A

Testing for HCV genotype is recommended to guide selection of the most appropriate antiviral regimen.

Rating: Class I, Level A
If found to have positive results for anti-HCV test and negative results for HCV RNA by polymerase chain reaction, persons should be informed that they do not have evidence of current (active) HCV infection.

Rating: Class I, Level A

Persons with current (active) HCV infection should receive education and interventions aimed at reducing progression of liver disease and preventing transmission of HCV.

Rating: Class IIa, Level B

1. **Abstinence from alcohol and, when appropriate, interventions to facilitate cessation of alcohol consumption should be advised for all persons with HCV infection.** **Rating:** Class IIa, Level B
2. **Evaluation for other conditions that may accelerate liver fibrosis, including HBV and HIV infections, is recommended for all persons with HCV infection.** **Rating:** Class IIb, Level B
3. **Evaluation for advanced fibrosis using liver biopsy, imaging, or noninvasive markers is recommended for all persons with HCV infection to facilitate an appropriate decision regarding HCV treatment strategy and to determine the need for initiating additional measures for the management of cirrhosis (eg, hepatocellular carcinoma screening).** **Rating:** Class I, Level B
4. **Vaccination against hepatitis A and hepatitis B is recommended for all susceptible persons with HCV infection.** **Rating:** Class IIa, Level C
5. **All persons with HCV infection should be provided education on how to avoid HCV transmission to others.** **Rating:** Class I, Level C

Evaluation by a practitioner who is prepared to provide comprehensive management, including consideration of antiviral therapy, is recommended for all persons with current (active) HCV infection.

Rating: Class IIa, Level C
Testing and Linkage to Care Table 1. FDA-approved, Commercially Available Anti-HCV Screening Assays

<table>
<thead>
<tr>
<th>Assay</th>
<th>Manufacturer</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott HCV EIA 2.0</td>
<td>Abbott Laboratories, Abbott Park, IL, USA</td>
<td>EIA (Manual)</td>
</tr>
<tr>
<td>Advia Centaur HCV</td>
<td>Siemens, Malvern, PA, USA</td>
<td>CIA (Automated)</td>
</tr>
<tr>
<td>ARCHITECT Anti-HCV</td>
<td>Abbott Laboratories, Abbott Park, IL, USA</td>
<td>CMIA (Automated)</td>
</tr>
<tr>
<td>AxSYM Anti-HCV</td>
<td>Abbott Laboratories, Abbott Park, IL, USA</td>
<td>MEIA (Automated)</td>
</tr>
<tr>
<td>OraQuick HCV Rapid Antibody Test</td>
<td>OraSure Technologies, Inc, Bethlehem, PA, USA</td>
<td>Immunochromatographic (Manual)</td>
</tr>
<tr>
<td>Ortho HCV Version 3.0 EIA</td>
<td>Ortho</td>
<td>EIA (Manual)</td>
</tr>
<tr>
<td>VITROS Anti-HCV</td>
<td>Ortho</td>
<td>CIA (Automated)</td>
</tr>
</tbody>
</table>

Anti-HCV = HCV antibody; EIA = enzyme immunoassay; CIA = chemiluminescent immunoassay; MEIA = microparticle enzyme immunoassay; CMIA = chemiluminescent microparticle immunoassay

Table prepared by Saleem Kamili, PhD, Centers for Disease Control and Prevention.
Testing and Linkage to Care Table 2. Measures to Prevent Transmission of HCV

- Persons with HCV infection should be counseled to avoid sharing toothbrushes and dental or shaving equipment, and be cautioned to cover any bleeding wound to prevent the possibility of others coming into contact with their blood.
- Persons should be counseled to stop using illicit drugs and enter substance abuse treatment. Those who continue to inject drugs should be counseled to avoid reusing or sharing syringes, needles, water, cotton, and other drug preparation equipment; use new sterile syringes and filters and disinfected cookers; clean the injection site with a new alcohol swab; and dispose of syringes and needles after one use in a safe, puncture-proof container.
- Persons with HCV infection should be advised not to donate blood and to discuss HCV serostatus prior to donation of body organs, other tissue, or semen.
- Persons with HIV infection and those with multiple sexual partners or sexually transmitted infections should be encouraged to use barrier precautions to prevent sexual transmission. Other persons with HCV infection should be counseled that the risk of sexual transmission is low and may not warrant barrier protection.
- Household surfaces and implements contaminated with visible blood from an HCV-infected person should be cleaned using a dilution of 1 part household bleach to 9 parts water. Gloves should be worn when cleaning up blood spills.
Testing and Linkage to Care Table 3: Common Barriers to HCV Treatment and Potential Strategies

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Strategy</th>
</tr>
</thead>
</table>
| Contraindications to treatment (eg, comorbidities, substance abuse, and psychiatric disorders) | • Counseling and education
• Referral to services (eg, psychiatry and opioid substitution therapy)
• Optimize treatment with simpler and less toxic regimens |
| Competing priority and loss to follow-up | • Conduct counseling and education
• Engage case managers and patient navigators (HIV model)
• Co-localize services (eg, primary care, medical homes, and drug treatment) |
| Long treatment duration and adverse effects | • Optimize treatment with simpler and better tolerated regimens
• Education and monitoring
• Directly observed therapy (tuberculosis model) |
| Lack of access to treatment (high cost, lack of insurance, geographic distance, and lack of availability of specialists) | • Leverage expansion of coverage through the Patient Protection and Affordable Care Act
• Participate in models of care involving close collaboration between primary care practitioners and specialists
• Pharmaceutical patient assistance programs
• Co-localize services (primary care, medical homes, drug treatment) |
| Lack of practitioner expertise | • Collaboration with specialists (eg, via Project ECHO-like models and telemedicine)
• Develop accessible and clear HCV treatment guidelines
• Develop electronic health record performance measures and clinical decision support tools (eg, pop-up reminders and standing orders) |
* For persons who might have been exposed to HCV within the past 6 months, testing for HCV RNA or follow-up testing for HCV antibody should be performed. For persons who are immunocompromised, testing for HCV RNA should be performed.

† To differentiate past, resolved HCV infection from biologic false positivity for HCV antibody, testing with another HCV antibody assay can be considered. Repeat HCV RNA testing if the person tested is suspected to have had HCV exposure within the past 6 months or has clinical evidence of HCV disease, or if there is concern regarding the handling or storage of the test specimen.

Adapted from Centers for Disease Control and Prevention (CDC), 2013. ([Centers for Disease Control and Prevention [CDC], 2013](http://www.cdc.gov/hepatitis/HCV/Guidelines/default.htm))
WHEN AND IN WHOM TO INITIATE HCV THERAPY

Successful hepatitis C treatment results in sustained virologic response (SVR), which is tantamount to virologic cure, and as such, is expected to benefit nearly all chronically infected persons. When the US Food and Drug Administration (FDA) approved the first IFN-sparing treatment for HCV infection, many patients who had previously been “warehoused” sought treatment, and the infrastructure (experienced practitioners, budgeted health-care dollars, etc) did not yet exist to treat all patients immediately. Thus, the panel offered guidance for prioritizing treatment first to those with the greatest need. Since that time, there have been opportunities to treat many of the highest-risk patients and to accumulate real-world experience of the tolerability and safety of newer HCV medications. More importantly, from a medical standpoint, data continue to accumulate that demonstrate the many benefits, within the liver and extrahepatic, that accompany HCV eradication. Therefore, the panel continues to recommend treatment for all patients with chronic HCV infection, except those with short life expectancies that cannot be remediated by treating HCV, by transplantation, or by other directed therapy. Accordingly, prioritization tables are now less useful and have been removed from this section.

Despite the strong recommendation for treatment for nearly all HCV-infected patients, pretreatment assessment of a patient’s understanding of treatment goals and provision of education on adherence and follow-up are essential. A well-established therapeutic relationship between practitioner and patient remains crucial for optimal outcomes with new direct-acting antiviral (DAA) therapies. Additionally, in certain settings there remain factors that impact access to medications and the ability to deliver them to patients. In these settings, practitioners may still need to decide which patients should be treated first. The descriptions below of unique populations may help physicians make more informed treatment decisions for these groups. (See sections on HIV/HCV coinfection [1], cirrhosis [2], liver transplantation [3], and renal impairment [4]).

Expansions and notes for abbreviations used in this section can be found in Methods Table 3 [5].

A summary of recommendations for When and in Whom to Initiate HCV Therapy is found in the BOX [6].

Goal of treatment

The goal of treatment of HCV-infected persons is to reduce all-cause
mortality and liver-related health adverse consequences, including end-stage liver disease and hepatocellular carcinoma, by the achievement of virologic cure as evidenced by a sustained virologic response.

Rating: Class I, Level A

Recommendations for when and in whom to initiate treatment

Treatment is recommended for all patients with chronic HCV infection, except those with short life expectancies that cannot be remediated by treating HCV, by transplantation, or by other directed therapy. Patients with short life expectancies owing to liver disease should be managed in consultation with an expert.

Rating: Class I, Level A

Clinical Benefit of Cure

The proximate goal of HCV therapy is SVR (virologic cure), defined as the continued absence of detectable HCV RNA at least 12 weeks after completion of therapy. SVR is a marker for cure of HCV infection and has been shown to be durable, in large prospective studies, in more than 99% of patients followed up for 5 years or more. (Swain, 2010 [7]; Manns, 2013 [8]) Patients in whom an SVR is achieved have HCV antibodies but no longer have detectable HCV RNA in serum, liver tissue, or mononuclear cells, and achieve substantial improvement in liver histology. (Marcellin, 1997 [9]; Coppola, 2013 [10]; Garcia-Bengoechea, 1999 [11]) Assessment of viral response, including documentation of SVR, requires use of an FDA-approved quantitative or qualitative nucleic acid test (NAT) with a detection level of 25 IU/mL or lower.

Patients who are cured of their HCV infection experience numerous health benefits, including a decrease in liver inflammation as reflected by improved aminotransferase (ie, alanine aminotransferase [ALT], aspartate aminotransferase [AST]) levels and a reduction in the rate of progression of liver fibrosis. (Poynard, 2002b [12]) Of 3010 treatment-naive HCV-infected patients with pretreatment and posttreatment biopsies from 4 randomized trials of 10 different IFN-based regimens (biopsies separated by a mean of 20 months), 39% to 73% of patients who achieved an SVR had improvement in liver fibrosis and necrosis (Poynard, 2002b [12]), and cirrhosis resolved in half of the cases. Portal hypertension, splenomegaly, and other clinical manifestations of advanced liver disease also improved. Among HCV-infected persons, SVR is associated with a more than 70% reduction in the risk of liver cancer (hepatocellular carcinoma [HCC]) and a 90% reduction in the risk of liver-related mortality and liver transplantation. (Morgan, 2013 [13]; van der Meer, 2012 [14]; Veldt, 2007 [15])

Cure of HCV infection also reduces symptoms and mortality from severe extrahepatic manifestations, including cryoglobulinemic vasculitis, a condition affecting 10% to 15% of HCV-infected patients. (Fabrizi, 2013 [16]; Landau, 2010 [17]) HCV-infected persons with non-Hodgkin lymphoma and other lymphoproliferative disorders achieve complete or partial remission in up to 75% of cases following
successful therapy for HCV infection. (Gisbert, 2005 [18]); (Takahashi, 2012 [19]); (Svoboda, 2005 [20]); (Mazzaro, 2002 [21]); (Hermine, 2002 [22]) These reductions in disease severity contribute to dramatic reductions in all-cause mortality. (van der Meer, 2012 [14]); (Backus, 2011 [23]) Lastly, patients who achieve SVR have substantially improved qualities of life, which include physical, emotional, and social health. (Neary, 1999 [24]); (Younossi, 2013 [25]) Because of the many benefits associated with successful HCV treatment, clinicians should treat HCV-infected patients with antiviral therapy with the goal of achieving an SVR, preferably early in the course of chronic HCV infection before the development of severe liver disease and other complications.

Benefits of Treatment at Earlier Fibrosis Stages (Metavir Stage Below F2)

Initiating therapy in patients with lower-stage fibrosis augments the benefits of SVR. In a long-term follow-up study, 820 patients with Metavir stage F0 or F1 fibrosis confirmed by biopsy were followed up for up to 20 years. (Jezequel, 2015 [26]) The 15-year survival rate was statistically significantly better for those who experienced an SVR than for those whose treatment had failed or for those who remained untreated (93%, 82%, and 88%, respectively; \(P = .003 \)). The study results argue for consideration of earlier initiation of treatment. Several modeling studies also suggest a greater mortality benefit if treatment is initiated at fibrosis stages prior to F3. (Øvrehus, 2015 [27]); (Zahnd, 2015 [28]); (McCombs, 2015 [29])

Treatment delay may decrease the benefit of SVR. In a report of long-term follow-up in France, 820 patients with biopsy-confirmed Metavir stage F0 or F1 fibrosis were followed up for as long as 20 years. (Jezequel, 2015 [26]) The authors noted rapid progression of fibrosis in 15% of patients during follow-up, and in patients treated successfully, long-term survival was better. Specifically, at 15 years, survival rate was 92% for those with an SVR versus 82% for treatment failures and 88% for those not treated. In a Danish regional registry study, investigators modeled treatment approaches with the aim of evaluating the benefit to the region in terms of reductions in morbidity and mortality and HCV prevalence. (Øvrehus, 2015 [27]) Although they note that in their situation of low HCV prevalence (0.4%), with approximately 50% undiagnosed, a policy that restricts treatment to those with Metavir fibrosis stage F3 or higher would decrease mortality from HCC and cirrhosis, the number needed to treat to halve the prevalence of the disease is lower if all eligible patients receive treatment at diagnosis. A modeling study based on the Swiss HIV Cohort Study also demonstrated that waiting to treat HCV infection at Metavir fibrosis stages F3 and F4 resulted in 2- and 5-times higher rates of liver-related mortality, respectively, compared with treating at Metavir stage F2. (Zahnd, 2015 [28])

A US Veterans Administration dataset analysis that used very limited end points of virologic response dating from the IFN-treatment era suggested that early (at a Fibrosis-4 [FIB-4] score of <3.25) initiation of therapy increased the benefit attained with respect to likelihood of treatment success and mortality reduction and ultimately decreased the number of patients needed to treat to preserve 1 life by almost 50%. (McCombs, 2015 [29])

Considerations in Specific Populations

Despite the recommendation for treatment of nearly all patients with HCV infection, it remains important for clinicians to understand patient- and disease-related factors that place individuals at risk for HCV-related complications (liver and extrahepatic) as well as for HCV transmission. Although these groups are no longer singled out for high prioritization for treatment, it is nonetheless important that practitioners recognize the unique dimensions of HCV disease and its natural history in these populations. The
discussions offered below may assist clinicians in making compelling cases for insurance coverage of treatment when necessary.

Persons With Advanced Liver Disease

For persons with advanced liver disease (Metavir stage F3 or F4), the risk of developing complications of liver disease such as hepatic decompensation (Child Turcotte Pugh [CTP] Class B or C [30] [Methods Table 3 [5]]) or HCC is substantial and may occur in a relatively short timeframe. A large prospective study of patients with cirrhosis resulting from HCV infection examined the risk of decompensation, including HCC, ascites, jaundice, bleeding, and encephalopathy, and found that the overall annual incidence rate was 3.9%. (Sangiovanni, 2006 [31]) The National Institutes of Health (NIH)-sponsored HALT-C study included a group of 220 patients with cirrhosis resulting from HCV infection who were observed for approximately 8 years. A primary outcome of death, hepatic decompensation, HCC, or increase in CTP score of 2 or higher occurred at a rate of 7.5% per year. (Everson, 2006 [32]; (Di Bisceglie, 2008 [33]) Patients with a CTP score of 7 or higher experienced a death rate of 10% per year.

Numerous studies have demonstrated that hepatitis C therapy and the achievement of an SVR in this population results in dramatic decreases in hepatic decompensation events, HCC, and liver-related mortality. (Morgan, 2013 [13]); (van der Meer, 2012 [14]); (Backus, 2011 [23]); (Dienstag, 2011 [34]); (Berenguer, 2009 [35]); (Mira, 2013 [36]) In the HALT-C study, patients with advanced fibrosis secondary to HCV infection who achieved an SVR, compared with patients with similarly advanced liver fibrosis who did not achieve an SVR, had a decreased need for liver transplantation (hazard ratio [HR], 0.17; 95% confidence interval [CI], 0.06–0.46), decreased development of liver-related morbidity and mortality (HR, 0.15; 95% CI, 0.06–0.38) and decreased HCC (HR, 0.19; 95% CI, 0.04–0.80). (Dienstag, 2011 [34]) Importantly, persons with advanced liver disease also require long-term follow-up and HCC surveillance regardless of treatment outcome (see Monitoring Section [37]).

Given the clinical complexity and the need for close monitoring, patients with advanced liver disease that has already decompensated (CTP Class B or C [30] [Methods Table 3 [5]]) should be treated by physicians with experience in treating HCV in conjunction with a liver transplantation center if possible.

Persons Who Have Undergone Liver Transplantation

In HCV-infected individuals, HCV infection of the liver allograft occurs universally in those with viremia at the time of transplantation. Histologic features of hepatitis develop in about 75% of recipients in the first 6 months following liver transplantation. (Neumann, 2004 [38]) By the fifth postoperative year, up to 30% of untreated patients have progressed to cirrhosis. (Neumann, 2004 [38]); (Charlton, 1998 [39]) A small proportion of patients (4%-7%) develop an accelerated course of liver injury (cholestatic hepatitis C, associated with very high levels of viremia) with subsequent rapid allograft failure. Recurrence of HCV infection posttransplantation is associated with decreased graft survival for recipients with HCV infection compared to recipients who undergo liver transplantation for other indications. (Forman, 2002 [40])

Effective HCV therapy pretransplantation resulting in an SVR (virologic cure) prevents HCV recurrence posttransplantation. (Everson, 2003 [41]) In addition, complete HCV viral suppression prior to transplantation prevents recurrent HCV infection of the graft in the majority of cases. (Forns, 2004 [42]); (Everson, 2005 [43]) Preliminary data from a study of patients with complications of cirrhosis secondary to HCV infection, who were wait-listed for liver transplantation, that included patients with MELD scores up to 14 and CTP scores up to 8 found that treatment with sofosbuvir and weight-based RBV for up to 48 weeks was well tolerated and was associated with an overall posttransplant SVR rate of 70%. (Curry, [44])
Posttransplant SVR was nearly universal among patients who had undetectable HCV RNA for 28 days or longer prior to transplantation. Treatment of established HCV infection posttransplantation also yields substantial improvements in patient and in graft survival. The availability of effective IFN-free HCV treatments has addressed the major hurdles to treating HCV recurrence posttransplantation: poor tolerability and efficacy. In a multicenter, open-label study that evaluated the ability of sofosbuvir plus RBV to induce virologic suppression in 40 patients post–liver transplant with compensated recurrence of HCV infection, daily sofosbuvir and RBV for 24 weeks achieved an SVR at 12 weeks (SVR12) in 70%. No deaths, graft losses, or episodes of rejection occurred. Six patients had serious adverse events, all of which were considered unrelated to study treatment. There were no drug interactions reported between sofosbuvir and any of the concomitant immunosuppressive agents. In contrast, treatment with sofosbuvir plus RBV with or without PEG-IFN in 64 patients with severe, decompensated cirrhosis resulting from recurrence of HCV infection following liver transplantation was associated with an overall SVR12 rate of 59% and a mortality rate of 13%. On an intent-to-treat basis, treatment was associated with clinical improvement in 57% and stable disease in 22% of patients.

Persons at Greater Risk for Rapidly Progressive Fibrosis and Cirrhosis

Fibrosis progression is variable across different patient populations as well as within the same individual over time. Many of the components that determine fibrosis progression and development of cirrhosis in an individual are unknown. However, certain factors, such as coinfection with HIV or hepatitis B virus (HBV) and prevalent coexistent liver diseases (eg, nonalcoholic steatohepatitis [NASH]), are well-recognized contributors to accelerated fibrosis progression.

HIV coinfection. HIV coinfection accelerates fibrosis progression among HCV-infected persons, although control of HIV replication and restoration of CD4+ cell counts may mitigate this to some extent. However, antiretroviral therapy is not a substitute for HCV treatment. In the largest paired-biopsy study, 282 HIV/HCV-coinfected patients with 435 paired biopsies were prospectively evaluated; one-third of patients showed fibrosis progression of at least one Metavir stage at a median of 2.5 years. Importantly, 45% of patients with no fibrosis on initial biopsy had progression. Finally, a more rapid progression to death following decompensation combined with a lack of widespread access to liver transplantation and poor outcomes following transplantation highlight the need for treatment in this population regardless of current fibrosis stage.

HBV coinfection and other coexistent liver diseases. The prevalence of HBV/HCV coinfection is estimated at 1.4% in the United States and 5% to 10% globally. Persons with HBV/HCV coinfection and detectable viremia of both viruses are at increased risk for disease progression, decompensated liver disease, and the development of HCC.

HBV/HCV coinfected individuals are susceptible to a process called viral interference wherein one virus may interfere with the replication of the other virus. Thus, when treating one or both viruses with antiviral drugs, periodic retesting of HBV DNA and HCV RNA levels during and after therapy is prudent, particularly if only one of the viruses is being treated at a time. Treatment of HCV infection in such cases utilizes the same genotype-specific regimens as are recommended for HCV monoinfection (see...
Treatment Section (59). HBV infections in such cases should be treated as recommended for HBV monoinfection. (Lok, 2009 [60])

Persons with other chronic liver diseases who have coincident chronic HCV infection should be considered for hepatitis C therapy, given the potential for rapid progression of liver disease. An IFN-free regimen is generally preferred for immune-mediated liver diseases such as autoimmune hepatitis, because of the potential for IFN-related exacerbation.

Persons With Extrahepatic Manifestations of Chronic HCV Infection

Severe renal impairment. Chronic hepatitis C is associated with a syndrome of cryoglobulinemia and an immune complex and lymphoproliferative disorder that produces arthralgias, fatigue, palpable purpura, renal disease (eg, membranoproliferative glomerulonephritis), neurologic disease (eg, peripheral neuropathy, central nervous system vasculitis), and reduced complement levels. (Agnello, 1992 [61]) Because patients with chronic hepatitis C frequently have laboratory evidence of cryoglobulins (more than 50% in some series), antiviral treatment is imperative for those with the syndrome of cryoglobulinemia and symptoms or objective evidence of end-organ manifestations. IFN-based regimens can produce clinical remission; however, the adverse effects of IFN may mimic manifestations of cryoglobulinemia. (Saadoun, 2014 [62]) Although clinical data are not yet available, the use of IFN-free DAA regimens is an attractive alternative for these patients. Organ-threatening disease (eg, severe neuropathy, renal failure, digital ischemia), in addition to antiviral HCV therapy, should be treated more acutely with immunosuppressive agents or plasmapheresis to clear immune complexes.

Glomerular disease results from deposition of HCV-related immune complexes in the glomeruli. (Johnson, 1993 [63]) Successful treatment of HCV using IFN-based regimens can reverse proteinuria and nephrotic syndrome but usually does not fully ameliorate azotemia. (Johnson, 1994 [64]) No clinical trial data are yet available on IFN-free regimens, but the high rates of SVR (virologic cure) with antiviral therapy support their use in management of hepatitis C–related renal disease and cryoglobulinemia.

Nonhepatic Manifestations of Chronic HCV Infection

The relationship between chronic hepatitis C and diabetes (most notably type 2 diabetes and insulin resistance) is complex and incompletely understood. The prevalence and incidence of diabetes is increased in the context of hepatitis C. (White, 2008 [65]) In the United States, type 2 diabetes occurs more frequently in HCV-infected patients, with a more than 3-fold greater risk in persons older than 40 years. (Mehta, 2000 [66]) The positive correlation between quantity of plasma HCV RNA and established markers of insulin resistance confirms this relationship. (Yoneda, 2007 [67]) Insulin resistance and type 2 diabetes are independent predictors of a more rapid progression of liver fibrosis and an impaired response to IFN-based therapy. (Petta, 2008 [68]) Patients with type 2 diabetes and insulin resistance are also at increased risk for HCC. (Hung, 2010 [69])

Successful antiviral treatment has been associated with improved markers of insulin resistance and greatly reduced incidence of new onset of type 2 diabetes and insulin resistance in HCV-infected patients. (Arase, 2009 [70]) Most recently, antiviral therapy for HCV infection has been shown to improve clinical outcomes related to diabetes. In a large prospective cohort from Taiwan, the incidence of end-stage renal disease, ischemic stroke, and acute coronary syndrome was greatly reduced in HCV-infected patients with diabetes who received antiviral therapy compared with untreated, matched controls. (Hsu, 2014 [71]) Therefore, antiviral therapy may prevent progression to diabetes in patients with prediabetes who have hepatitis C and may reduce renal and cardiovascular complications in patients with established
diabetes who have hepatitis C.

In patients with chronic hepatitis C, fatigue is the most frequently reported symptom and has a major effect on quality of life and activity level evidenced by numerous measures of impaired quality of life. (Foster, 1998 [72]) The presence and severity of fatigue appears to correlate poorly with disease activity, although it may be more common and severe in HCV-infected individuals with cirrhosis. (Poynard, 2002a [73]) Despite difficulties in separating fatigue symptoms associated with hepatitis C from those associated with other concurrent conditions (eg, anemia, depression), numerous studies have reported a reduction in fatigue after cure of HCV infection. (Bonkovsky, 2007 [74]) In the Virahep-C study, 401 patients with HCV infection were evaluated for fatigue prior to and after treatment, using validated scales to assess the presence and severity of fatigue. (Sarkar, 2012 [75]) At baseline, 52% of patients reported having fatigue, which was more frequent and severe in patients with cirrhosis than in those without cirrhosis. Achieving an SVR was associated with a substantial decrease in frequency and severity of fatigue. A recent analysis of 413 patients from the NEUTRINO and FUSION trials who were treated with a sofosbuvir-containing regimen and who achieved an SVR12 demonstrated improvement in patient fatigue (present in 12%) from the pretreatment level. (Younossi, 2014 [76]) After achieving an SVR12, participants had marked improvements in fatigue over their pretreatment scores measured by 3 separate validated questionnaires. Additional studies support and extend these findings beyond fatigue, with improvements in overall health-related quality of life and work productivity observed following successful HCV therapy. (Gerber, 2015 [77]); (Younossi, 2015b [78]); (Younossi, 2015c [79]); (Younossi, 2015d [80])

The reported prevalence of HCV infection in patients with porphyria cutanea tarda approximates 50% and occurs disproportionately in those with cirrhosis. (Gisbert, 2003 [81]) The treatment of choice for active porphyria cutanea tarda is iron reduction by phlebotomy and maintenance of a mildly iron-reduced state without anemia. However, although improvement of porphyria cutanea tarda during HCV treatment with IFN has frequently been described (Takikawa, 1995 [82]), there are currently insufficient data to determine whether treating HCV infection with DAAs and achievement of SVR improve porphyria cutanea tarda.

Lichen planus is characterized by pruritic papules involving mucous membranes, hair, and nails. Antibodies to HCV are present in 10% to 40% of patients with lichen planus, but a causal link with chronic infection is not established. Resolution of lichen planus has been reported with IFN-based regimens, but there have also been reports of exacerbation of lichen planus with these treatments. Although it is unknown whether DAAs will have more success against lichen planus, treatment with IFN-free regimens would appear to be a more advisable approach to addressing this disorder. (Gumber, 1995 [83])

Benefit of Treatment to Reduce Transmission

Persons who have successfully achieved an SVR (virologic cure) no longer transmit the virus to others. As such, successful treatment of HCV infection benefits public health. Several health models have shown that even modest increases in successful treatment of HCV infection among persons who inject drugs can decrease prevalence and incidence. (Martin, 2013a [84]); (Durier, 2012 [85]); (Martin, 2013b [86]); (Hellard, 2012 [87]) Models developed to estimate the impact of HCV testing and treatment on the burden of hepatitis C at a country level reveal that large decreases in HCV prevalence and incidence are possible as more persons are successfully treated. (Wedemeyer, 2014 [88]) There are also benefits to eradicating HCV infection between couples and among families, and thus eliminating the perception that an individual might be contagious. In addition, mother-to-child transmission of HCV does not occur if the woman is not viremic, providing an additional benefit of curing a woman before she becomes pregnant. (Thomas, 1998 [89])
However, the safety and efficacy of treating women who are already pregnant to prevent transmission to the fetus have not yet been established, and thus treatment is not recommended for pregnant women.

The Society for Healthcare Epidemiology of America (SHEA) advises that health-care workers who have substantial HCV viral replication (≥10^4 genome equivalents/mL) be restricted from performing procedures that are prone to exposure (Henderson, 2010) and that all health-care workers with confirmed chronic HCV infection should be treated. For reasons already stated above, the achievement of an SVR in such individuals will not only eliminate the risk of HCV transmission to patients but also decrease circumstantial loss of experienced clinicians. Given concerns about underreporting of infection and transmission (Henderson, 2010), the availability of effective, all-oral regimens should lead to greater willingness on the part of exposure-prone clinicians to be tested and treated.

Successful treatment of HCV-infected persons at greatest risk for transmission represents a formidable tool to help stop HCV transmission in those who continue to engage in high-risk behaviors. To guide implementation of hepatitis C treatment as a prevention strategy, studies are needed to define the best candidates for treatment to stop transmission, the additional interventions needed to maximize the benefits of HCV treatment (eg, preventing reinfection), and the cost-effectiveness of the strategies when used in target populations.

Persons who inject drugs. Injection drug use (IDU) is the most common risk factor for HCV infection in the United States and Europe, with an HCV seroprevalence of 10% to 70%; (Amon, 2008; Nelson, 2011) IDU also accounts for the majority of new HCV infections (approximately 70%) and is the key driving force in the perpetuation of the epidemic. Given these facts and the absence of an effective vaccine against HCV, testing and linkage to care combined with treatment of HCV infection with potent IFN-free regimens has the potential to dramatically decrease HCV incidence and prevalence. (Martin, 2013b) However, treatment-based strategies to prevent HCV transmission have yet to be studied, including how to integrate hepatitis C treatment with other risk-reduction strategies (eg, opiate substitution therapy, needle and syringe exchange programs). (Martin, 2013a)

In studies of IFN-containing treatments in persons who inject drugs, adherence and efficacy rates are comparable to those of patients who do not use injection drugs. A recent meta-analysis of treatment with PEG-IFN with or without RBV in active or recent injection drug users showed SVR rates of 37% and 67% for HCV genotype 1 or 4 and 2 or 3, respectively. (Aspinall, 2013) As shorter, better-tolerated, and more efficacious IFN-free therapies are introduced, these SVR rates are expected to improve. Importantly, the rate of reinfection in this population is lower (2.4/100 person-years of observation) than that of incident infection in the general population of injection drug users (6.1-27.2/100 person-years), although reinfection increases with active or ongoing IDU (6.44/100 person-years) and available data on follow-up duration are limited. (Aspinall, 2013; Grady, 2013)

Ideally, treatment of HCV-infected persons who inject drugs should be delivered in a multidisciplinary care setting with services to reduce the risk of reinfection and for management of the common social and psychiatric comorbidities in this population. Regardless of the treatment setting, recent and active IDU should not be seen as an absolute contraindication to HCV therapy. There is strong evidence from various settings in which persons who inject drugs have demonstrated adherence to treatment and low rates of reinfection, countering arguments that have been commonly used to limit access to this patient population. (Aspinall, 2013; Hellard, 2014; Grebely, 2011) Indeed, combining HCV treatment with needle exchange and opioid replacement programs in this population with a high prevalence of HCV
infection has shown great value in decreasing the burden of HCV disease. Elegant modeling studies illustrate the high return on the modest investment of addressing this often-ignored segment of the HCV-infected population. (Martin, 2013b [86]) These conclusions were drawn before the introduction of the latest DAA regimens. Conversely, there are no data to support the utility of pretreatment screening for illicit drug or alcohol use in identifying a population more likely to successfully complete HCV therapy. These requirements should be abandoned, because they create barriers to treatment, add unnecessary cost and effort, and potentially exclude populations that are likely to obtain substantial benefit from therapy. Scale up of HCV treatment in persons who inject drugs is necessary to positively impact the HCV epidemic in the United States and globally.

HIV-infected men who have sex with men (MSM) who engage in high-risk sexual practices. Over the past decade, a dramatic increase in incident HCV infections among HIV-infected MSM who did not report IDU as a risk factor has been demonstrated in several US cities. (van de Laar, 2010 [97]) Recognition and treatment of HCV infection (including acute infection) in this population may represent an important step in preventing subsequent infections. As with persons who inject drugs, HIV/HCV-coinfected MSM who engage in ongoing high-risk sexual practices should be treated for their HCV infection in conjunction with continued education on risk-reduction strategies. In particular, safer-sex strategies should be emphasized given the high rates of reinfection after SVR, which may approach 30% over 2 years, in HIV-infected MSM with acute HCV infection. (Lambers, 2011 [98])

Incarcerated persons. Among incarcerated individuals, the rate of HCV seroprevalence ranges from 30% to 60% (Post, 2013 [99]) and the rate of acute infection is approximately 1%. (Larney, 2013 [100]) Screening for HCV infection is relatively uncommon in state prison systems. Treatment uptake has been limited in part because of the toxic effects and long treatment duration of older IFN-based therapies as well as concerns about cost. (Spaulding, 2006 [101]) In particular, truncation of HCV treatment owing to release from prison has been cited as a major limitation to widespread, effective HCV treatment in correctional facilities. (Post, 2013 [99]); (Chew, 2009 [102]) Shorter (12- to 24-week) HCV therapies reduce duration of stay-related barriers to HCV treatment in prisons. Likewise, the improved safety of newer, all-oral regimens diminishes concerns of toxic effects. Coordinated treatment efforts within prison systems would likely rapidly decrease the prevalence of HCV infection in this at-risk population, although research is needed in this area.

Persons on hemodialysis. The prevalence rate of HCV infection is markedly elevated in persons on hemodialysis and ranged from 2.6% to 22.9% in a large multinational study. (Fissell, 2004 [103]) Studies in the United States found a similarly elevated prevalence rate of 7.8% to 8.9%. (Centers for Disease Control and Prevention, 2001 [104]); (Finelli, 2005 [105]) Importantly, the seroprevalence of HCV was found to increase with time on dialysis, suggesting that nosocomial transmission, among other risk factors, plays a role in HCV acquisition in these patients. (Fissell, 2004 [103]) Improved education and strict adherence to universal precautions can drastically reduce nosocomial HCV transmission risks for persons on hemodialysis, (Jadoul, 1998 [106]) but clearance of HCV viremia through treatment-induced SVR eliminates the potential for transmission.

HCV-infected persons on hemodialysis have a decreased quality of life and increased mortality compared with uninfected persons on hemodialysis. (Fabrizi, 2002 [107]); (Fabrizi, 2007 [108]); (Fabrizi, 2009 [109]) HCV infection in this population also has a deleterious impact on kidney transplantation outcomes with decreased patient and graft survival. (Fabrizi, 2014 [110]) The increased risk for nosocomial transmission and the substantial clinical impact of HCV infection in those on hemodialysis are compelling arguments for HCV therapy as effective antiviral regimens that can be used in persons with advanced renal failure.
become available.

Populations Unlikely to Benefit From HCV Treatment

Patients with a limited life expectancy that cannot be remediated by treating HCV, by transplantation, or by other directed therapy do not require treatment. Patients with short life expectancies owing to liver disease should be managed in consultation with an expert. Chronic hepatitis C is associated with a wide range of comorbid conditions. (Butt, 2011 [111]; Louie, 2012 [112]) Little evidence exists to support initiation of HCV treatment in patients with limited life expectancy (less than 12 months) owing to non-liver-related comorbid conditions. For these patients, the benefits of HCV treatment are unlikely to be realized and palliative care strategies should take precedence. (Holmes, 2006 [113]; Maddison, 2011 [114])

Recommendations for pretreatment assessment

An assessment of the degree of hepatic fibrosis, using noninvasive testing or liver biopsy, is recommended.

Rating: Class I, Level A

An accurate assessment of fibrosis remains vital, as degree of hepatic fibrosis is one of the most robust prognostic factors used to predict HCV disease progression and clinical outcomes. (Everhart, 2010 [115]) Individuals with severe fibrosis require surveillance monitoring for liver cancer, esophageal varices, and hepatic function. (Garcia-Tsao, 2007 [116]; Bruix, 2011 [117]) In some instances, the recommended duration of treatment is also longer [118].

Although liver biopsy is the diagnostic standard, sampling error and observer variability limit test performance, particularly when inadequate sampling occurs. Up to one-third of bilobar biopsies had a difference of at least 1 stage between the lobes. (Bedossa, 2003 [119]) In addition, the test is invasive and minor complications are common, limiting patient and practitioner acceptance. Serious complications such as bleeding, although rare, are well recognized.

Noninvasive tests to stage the degree of fibrosis in patients with chronic HCV infection include models incorporating indirect serum biomarkers (routine tests), direct serum biomarkers (components of the extracellular matrix produced by activated hepatic stellate cells), and vibration-controlled transient liver elastography. No single method is recognized to have high accuracy alone and each test must be interpreted carefully. A recent publication of the Agency for Healthcare Research and Quality found evidence in support of a number of blood tests; however, at best, they are only moderately useful for identifying clinically significant fibrosis or cirrhosis. (Selph, 2014 [120])

Vibration-controlled transient liver elastography is a noninvasive way to measure liver stiffness and correlates well with measurement of substantial fibrosis or cirrhosis in patients with chronic HCV infection. The measurement range does overlap between stages. (Ziol, 2005 [121]; Afdhal, 2015 [122]; Castera, 2005 [123])

The most efficient approach to fibrosis assessment is to combine direct biomarkers and vibration-
controlled transient liver elastography. (Boursier, 2012 [124]); (European Association for the Study of the Liver and Asociacion Latinoamericana para el Estudio del Higado, 2015 [125]) A biopsy should be considered for any patient who has discordant results between the 2 modalities that would affect clinical decision making. For example, one shows cirrhosis and the other does not. The need for liver biopsy with this approach is markedly reduced.

Alternatively, if direct biomarkers or vibration-controlled transient liver elastography are not available, the AST-to-platelet ratio index (APRI) or FIB-4 index score can help, (Sebastiani, 2009 [126]); (Castera, 2010 [127]); (Chou, 2013b [128]) although neither test is sensitive enough to rule out substantial fibrosis. (Chou, 2013b [128]) Biopsy should be considered in those in whom more accurate fibrosis staging would impact treatment decisions. Individuals with clinically evident cirrhosis do not require additional staging (biopsy or noninvasive assessment).

Recommendation for repeat liver disease assessment

Ongoing assessment of liver disease is recommended for persons in whom therapy is deferred.

Rating: Class I, Level C

When therapy is deferred, it is especially important to monitor liver disease in these patients. In line with evidence-driven recommendations for treatment of nearly all HCV-infected patients, several factors must be taken into consideration if treatment deferral is entertained or mandated by lack of medication access. As noted, strong and accumulating evidence argue against deferral because of decreased all-cause morbidity and mortality, prevention of onward transmission, and quality-of-life improvements for patients treated regardless of baseline fibrosis. Additionally, treatment of HCV infection may improve or prevent extrahepatic complications, including diabetes mellitus, cardiovascular disease, renal disease, and B-cell non-Hodgkin lymphoma, (Conjeevaram, 2011 [129]); (Hsu, 2015 [130]); (Torres, 2015 [131]) which are not tied to fibrosis stage. (Allison, 2015 [132]); (Petta, 2015 [133]) Deferral practices based on fibrosis stage alone are inadequate and shortsighted.

Fibrosis progression varies markedly between individuals based on host, environmental, and viral factors (Table 1 [134]). (Feld, 2006 [135]) Fibrosis may not progress linearly. Some individuals (often those aged >50 years) may progress slowly for many years followed by an acceleration of fibrosis progression. Others may never develop substantial liver fibrosis despite longstanding infection. The presence of existing fibrosis is a strong risk factor for future fibrosis progression. Fibrosis results from chronic hepatic necroinflammation, and thus a higher activity grade on liver biopsy and higher serum transaminase values are associated with more rapid fibrosis progression. (Ghany, 2003 [136]) However, even patients with normal ALT levels may develop substantial liver fibrosis over time. (Pradat, 2002 [137]); (Nutt, 2000 [138]) The limitations of transient elastography and liver biopsy in ascertaining the progression of fibrosis must be recognized.

Host factors associated with more rapid fibrosis progression include male sex, longer duration of infection, and older age at the time of infection. (Poynard, 2001 [139]) Many patients have concomitant nonalcoholic fatty liver disease, and the presence of hepatic steatosis with or without steatohepatitis on liver biopsy, elevated body mass index, insulin resistance, and iron overload are associated with fibrosis
progression. (Konerman, 2014 [51]); (Everhart, 2009 [140]) Chronic alcohol use is an important risk factor because alcohol consumption has been associated with more rapid fibrosis progression. (Feld, 2006 [135]) A safe amount of alcohol consumption has not been established. Cigarette smoking may also lead to more rapid fibrosis progression.

Immunosuppression leads to more rapid fibrosis progression, particularly HIV/HCV coinfection and solid organ transplantation. (Macias, 2009 [50]); (Konerman, 2014 [51]); (Berenguer, 2013 [141]) Therefore, immunocompromised patients should be treated even if they have mild liver fibrosis at presentation.

Level of HCV RNA does not correlate with stage of disease (degree of inflammation or fibrosis). Available data suggest that fibrosis progression occurs most rapidly in patients with HCV genotype 3 infection. (Kanwal, 2014 [142]) (Bochud, 2009 [143]) Aside from coinfection with HBV or HIV, no other viral factors are consistently associated with disease progression.

Although an ideal interval for assessment has not been established, annual evaluation is appropriate to discuss modifiable risk factors and to update testing for hepatic function and markers for disease progression. For all individuals with advanced fibrosis, liver cancer screening dictates a minimum of evaluation every 6 months.

When and in Whom to Initiate HCV Therapy Table 1. Factors Associated With Accelerated Fibrosis Progression

<table>
<thead>
<tr>
<th>Host</th>
<th>Viral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonmodifiable</td>
<td>HCV genotype 3</td>
</tr>
<tr>
<td>Fibrosis stage</td>
<td>Coinfection with hepatitis B virus or HIV</td>
</tr>
<tr>
<td>Inflammation grade</td>
<td></td>
</tr>
<tr>
<td>Older age at time of infection</td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td></td>
</tr>
<tr>
<td>Organ transplant</td>
<td></td>
</tr>
<tr>
<td>Modifiable</td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td></td>
</tr>
<tr>
<td>Nonalcoholic fatty liver disease</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td>Insulin resistance</td>
<td></td>
</tr>
</tbody>
</table>

Changes made on October 22, 2015.
When and in Whom to Initiate HCV Therapy Box. Summary of Recommendations for When and in Whom to Initiate HCV Therapy

Goal of treatment

The goal of treatment of HCV-infected persons is to reduce all-cause mortality and liver-related health adverse consequences, including end-stage liver disease and hepatocellular carcinoma, by the achievement of virologic cure as evidenced by a sustained virologic response.

Rating: Class I, Level A

Recommendations for when and in whom to initiate treatment

Treatment is recommended for all patients with chronic HCV infection, except those with short life expectancies that cannot be remediated by treating HCV, by transplantation, or by other directed therapy. Patients with short life expectancies owing to liver disease should be managed in consultation with an expert.

Rating: Class I, Level A

Recommendations for pretreatment assessment

An assessment of the degree of hepatic fibrosis, using noninvasive testing or liver biopsy, is recommended.

Rating: Class I, Level A

Recommendation for repeat liver disease assessment
Ongoing assessment of liver disease is recommended for persons in whom therapy is deferred.

Rating: Class I, Level C

When and in Whom to Initiate HCV Therapy Table 1. Factors Associated with Accelerated Fibrosis Progression

<table>
<thead>
<tr>
<th>Host</th>
<th>Viral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonmodifiable</td>
<td>HCV genotype 3</td>
</tr>
<tr>
<td>Fibrosis stage</td>
<td>Coinfection with hepatitis B virus or HIV</td>
</tr>
<tr>
<td>Inflammation grade</td>
<td></td>
</tr>
<tr>
<td>Older age at time of infection</td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td></td>
</tr>
<tr>
<td>Organ transplant</td>
<td></td>
</tr>
<tr>
<td>Modifiable</td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td></td>
</tr>
<tr>
<td>Nonalcoholic fatty liver disease</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td>Insulin resistance</td>
<td></td>
</tr>
</tbody>
</table>
OVERVIEW OF COST, REIMBURSEMENT, AND COST-EFFECTIVENESS CONSIDERATIONS FOR HEPATITIS C TREATMENT REGIMENS

The Hepatitis C Guidance describes how to diagnose, link to care, and treat most groups of patients with HCV. (AASLD/IDSA/IAS-USA, 2015 [1]) However, a common challenge is reduced access to treatment caused by restrictions on drug reimbursement. This section summarizes the US payer system, explains the concepts of cost, price, cost-effectiveness, value, and affordability, and reviews current evidence of the cost-effectiveness of strategies to improve access to treatment. Although these may sound similar and are often confused, the following discussion will seek to clarify these terms with regard to HCV therapy. To be clear, this section is informational. As explained below, actual costs are rarely known. Accordingly, the HCV Guidance does not utilize cost-effectiveness analysis to guide recommendations at this time.

Table. Abbreviations Specific to Overview of Cost, Reimbursement, and Cost-effectiveness Considerations for Hepatitis C Treatment Regimens

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Expanded Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>Affordable Care Act</td>
</tr>
<tr>
<td>AMP</td>
<td>Average manufacturer price</td>
</tr>
<tr>
<td>AWP</td>
<td>Average wholesale price</td>
</tr>
<tr>
<td>CEA</td>
<td>Cost-effectiveness analysis</td>
</tr>
<tr>
<td>Cn</td>
<td>Cost of new therapy</td>
</tr>
<tr>
<td>Co</td>
<td>Cost of old therapy</td>
</tr>
<tr>
<td>ICER</td>
<td>Incremental cost-effectiveness ratio</td>
</tr>
<tr>
<td>PBM</td>
<td>Pharmacy benefit manager</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality-adjusted life-year</td>
</tr>
</tbody>
</table>
Drug Cost and Reimbursement

There are many organizations involved with the distribution of hepatitis C drugs and each can impact costs, as well as the decision of which regimens are reimbursed. (US Government Accountability Office, 2015 [2]) (Congress of the United States Congressional Budget Office, 2015 [3]) The roles these organizations have in determining the actual price paid for drugs and who has access to treatment include the following:

- Pharmaceutical companies determine the wholesale acquisition cost (WAC) of a drug (like a “sticker price”). The company negotiates contracts with other organizations within the pharmaceutical supply chain that allow for rebates or discounts that decrease the actual price paid.
- Pharmacy benefit managers (PBMs) often negotiate contracts with pharmaceutical companies on behalf of health insurance companies. Such contracts may include restrictions on who can be reimbursed for treatment and may offer exclusivity (restrictions on which medications can be prescribed) in exchange for lower prices, often provided in the form of WAC discounts.
- Private insurance companies often have separate pharmacy and medical budgets and use PBMs or negotiate drug pricing directly with pharmaceutical companies. Insurance companies determine formulary placement, which impacts choice of regimens and out-of-pocket expenses for patients. An insurance company can cover private, managed care Medicaid, and Medicare plans and can have different formularies for each line of business.
- Medicaid is a heterogeneous compilation of insurance plans that includes fee-for-service and managed care options. Most plans negotiate rebates with pharmaceutical manufacturers (through PBMs or individually). Differences in negotiated contracts between plans have led to Medicaid patients in different states having widely varied access to HCV therapy. Disparities may even exist between patients enrolled in different Medicaid plans within the same state. (Barua, 2015 [4]) State Medicaid programs have benefited from the Patient Protection and Affordable Care Act (ACA), although such benefits are mitigated in states that have opted out of expanding Medicaid coverage under the ACA. In general, for single-source drugs such as the currently available hepatitis C treatments, Medicaid plans receive the lowest price offered to any other payer (outside certain government agencies), and the minimum Medicaid drug rebate is 23.1% of the average manufacturer price (AMP; another payment benchmark).
- Medicare covers HCV drugs through Part D benefits and is prohibited by law from directly negotiating drug prices. These drug plans are offered through PBMs or commercial health plans, which may negotiate discounts or rebates with pharmaceutical companies.
- The Veterans Health Administration receives mandated rebates through the Federal Supply Schedule, which sets drug prices for a number of government agencies, including the Department of Veterans Affairs, federal prisons, and the Department of Defense, and typically receives substantial discounts over average wholesale price (AWP).
• State prisons and jails are usually excluded from Medicaid-related rebates and often do not have the negotiating leverage of larger organizations and may end up paying higher prices than most other organizations.
• Specialty pharmacies receive dispensing fees and may receive additional payments from contracted insurance companies, PBMs, or pharmaceutical companies to provide services such as adherence support, management of adverse effects, and outcomes measurements such as early discontinuation rates and sustained virologic response rates.
• Patients incur costs (eg, copayment or coinsurance) determined by their pharmacy plan. Patient assistance programs through pharmaceutical companies or foundations can cover many of these out-of-pocket expenses or provide drugs at no cost to qualified patients who are unable to pay.

With the exception of mandated rebates, negotiations of drug prices are considered confidential business contracts and, therefore, there is almost no transparency regarding the actual prices paid for hepatitis C drugs. (Saag, 2015) However, the average negotiated discount is reported to be 46% off the WAC in 2015, implying that most payers are paying well below the WAC price for HCV regimens. (The New York Times, 2015)

Cost-effectiveness

Cost-effectiveness analysis (CEA) compares the relative costs and outcomes of 2 or more interventions. CEA explicitly recognizes budget limitations for health-care spending and seeks to maximize public health benefits within those budget constraints. CEA is typically expressed as an incremental cost-effectiveness ratio (ICER), the ratio of change in costs between 2 or more interventions to the change in effects. In short, CEA provides a framework for comparing the health-care costs and societal benefits of different technologies or therapies.

To make such comparisons, 3 questions first need to be answered:

1. How much more will we spend on a new intervention? This is not as simple as determining the cost of a new medication but also the cost of the intervention over the course of a person’s lifetime and the cost savings from the prevention or attenuation of disease complications. Further, the cost of current standard therapy and the cost of the disease should be considered, so incremental cost-effectiveness requires understanding the incremental cost of new versus old. Given the lack of transparency in health-care costs in the United States, this is at best an inexact estimate.
2. How much more benefit accrues from a new intervention? To compare health interventions using a single metric across diseases and interventions and to integrate both duration and quality of life gained, benefit is measured in terms of quality-adjusted life-years (QALYs). CEA asks: “If a new therapy is implemented, how many more QALYs will likely be gained from the new medications?”
3. How much is society willing to pay to gain 1 additional QALY? This willingness-to-pay threshold typically varies by country and acknowledges opportunity costs. Spending more money on one disease may mean spending less money on other diseases. Similarly, spending more on health care means less spending for education, defense, or environment. Although it may seem inappropriate to set a monetary value on human life, willingness-to-pay thresholds only acknowledge that budgets are finite and provide a measure of societal value. They are not intended to be a moral valuation.

Once these questions are answered, CEA provides a simple rubric for making normative determinations about whether a new technology provides good value for its cost. First, the ICER of the new therapy is calculated as: \((C_n - C_o) \div (QALY_n - QALY_o)\), where \(C_n\) is the cost of the new therapy, \(C_o\) is the cost of the
old (comparison) therapy, and QALY is quality-adjusted life-year, shown as new (n) or old (o).

Once the ICER is determined, it is compared with the societal willingness-to-pay threshold (typically considered to be $50,000 to $100,000/QALY gained in the United States). ICERs that are less than the willingness-to-pay threshold represent a good value, and such interventions can be considered cost-effective. Interventions with ICERs exceeding the willingness-to-pay threshold would be less efficient uses of limited budget resources.

Affordability

An intervention that is cost-effective is not necessarily affordable. Affordability refers to whether a payer has sufficient resources in its annual budget to pay for a new therapy for all who might need or want it within that year. Several characteristics of CEA limit its ability to speak to the budget impact of interventions being implemented in the real world:

1. **Perspective on cost:** CEA seeks to inform decisions about how society should prioritize health-care spending. As such, it typically assumes a societal perspective on costs and includes all costs from all payers, including out-of-pocket expenses for the patient. When making coverage decisions for therapy, however, an insurer considers only its own revenues and expenses.

2. **Time horizon:** CEA uses a lifetime time horizon, meaning that it considers lifetime costs and benefits, including those that occur in the distant future. Business budget planning, however, typically assumes a 1-year to 5-year perspective. Savings that may accrue 30 years from now have very little impact on spending decisions today, because they have little bearing on the solvency of the budget today.

3. **Weak association between willingness to pay and the real-world bottom line:** Societal willingness-to-pay thresholds in CEAs are not based on actual budget calculations and have little connection to a payer’s bottom line. Given the rapid development of new technologies, funding all of them, even if they all fell below the societal willingness-to-pay threshold, would likely lead to uncontrolled growth in demand and would likely exceed the limited health-care budget.

There is no mathematic formula that provides a good means of integrating the concerns of value and affordability. When new therapies for HCV are deemed cost-effective, it indicates that such therapies provide excellent benefits for the resources invested in their use and that providing more therapy is a good investment in the long term. Determining the total resources that can be spent on HCV treatment, however, depends on political and economic factors that are not captured by cost-effectiveness determinations.

Cost-effectiveness of Current All-Oral Regimens for Hepatitis C Treatment

Recently published studies compared all-oral, direct-acting antiviral (DAA) regimens to previous standard-of-care regimens (usually IFN based) to calculate ICERs. In general, treating patients with more advanced fibrosis or cirrhosis provided better value (lower ICERs) than treating those with milder disease. Indeed, the ICERs of therapy for treatment-naive patients who do not have cirrhosis are generally within the range of other widely used medical therapies. Although it is possible to make some general comments about cost-effectiveness for these new HCV drug regimens, it is important to recognize that this task is difficult, owing to the rapid changes in available drugs, the variability in cost (see above), and individual patient characteristics such as fibrosis stage, comorbidities, estimated life expectancy, and HCV genotype.

HCV Genotype 1
There are several cost-effectiveness studies of IFN-free, DAA therapy for HCV genotype 1 infection across various models and using independently derived assumptions about disease progression, costs, and quality of life. Most have shown ICERs within the range of other accepted medical practices. Published ICERs of all-oral regimens for treatment-naive patients with HCV genotype 1 infection in the United States range from cost saving (less than $0) to $31,452 per QALY gained, depending on the presence or absence of cirrhosis. (Chatwal, 2015 [7]; Najafzadeh, 2015 [8]; Linas, 2015 [9]; Younossi, 2015a [10]) However, ICERs as high as $84,744 to $178,295 per QALY gained have been reported among the more recalcitrant IFN-experienced patients with fibrosis who are being retreated using an IFN-free regimen. (Chatwal, 2015)

HCV Genotype 2

ICERs of all-oral regimens in HCV genotype 2–infected persons ranged from $35,500 to $238,000 per QALY gained, depending on the presence or absence of cirrhosis. (Chatwal, 2015 [7]; Najafzadeh, 2015 [8]; Linas, 2015 [9]). In analyses among treatment-naive patients without cirrhosis, the AWP of sofosbuvir led to ICERS being higher than US willingness-to-pay thresholds, but with the lower costs negotiated by some payers, the ICERS for all patient groups would fall within accepted pay thresholds for other accepted medical interventions in the United States. (Najafzadeh, 2015 [8]; Linas, 2015 [9])

HCV Genotype 3

The ICERs of IFN-free therapy for HCV genotype 3 infection reflect the clinical reality that IFN-free regimens are less effective for treating patients with this genotype than any other genotype. As a result, ICERs of all-oral regimens ranged from being inferior (costing more with lower effectiveness) to $410,548 per QALY gained, depending on the presence or absence of cirrhosis. (Chatwal, 2015 [7]; Linas, 2015 [9]). In one analysis, the preferred therapy for HCV genotype 3 infection from a purely cost-effectiveness–based perspective was PEG-IFN, RBV, and sofosbuvir. (Linas, 2015 [9])

HCV Genotype 4

For HCV genotype 4 infection, ICERs of all-oral regimens ranged from $34,349 to $80,793 per QALY gained, depending on the presence or absence of cirrhosis. (Chatwal, 2015 [7]) However, these findings are based on treatment efficacy from small studies and must be confirmed once better data on treatment response are available.

Limitations

These published CEAs considered a variety of all-oral and nonoral regimens, often for different treatment durations, and patient populations and were not always consistent with current treatment recommendations and guidelines. Some regimens recommended in the HCV Guidance have not yet been subjected to economic analyses. Other analyses that are not described here include, for example, the impact of immediate versus delayed treatment. No CEAs have addressed the potential benefit in reduction of HCV transmission (cure as prevention). Analyses used published WAC prices, which are higher than the actual prices paid by most payers and reflect an upper threshold of ICER, but most also considered the impact of negotiated price discounts on cost-effectiveness conclusions. One sensitivity analysis found that it would be cost-effective to treat all patients (Metavir fibrosis stages F0-F4) with chronic HCV genotype 1 infection compared with waiting until patients’ fibrosis had progressed to at least stage F1 if a total all-oral regimen were to cost less than $22,000. (Rein, 2015 [11])
Conclusions

Although the wholesale acquisition costs of HCV drugs often result in ICERs that make treatment appear unaffordable, the reality is that insurers, PBMs, and government agencies negotiate pricing and few actually pay the much-publicized WAC (retail). However, the negotiated pricing and cost structure for pharmaceutical products in the United States are not transparent, and it is therefore difficult to estimate the true cost and cost-effectiveness of HCV drugs. Whatever the actual current cost of HCV DAAs, competition and negotiated pricing have not improved access to care for many persons with HCV infection and continue to limit the public health impact of these new therapies. Insurers, government, and pharmaceutical companies should work together to bring medication prices to the point where all of those in need of treatment are able to afford and readily access it.

This section was added on August 20, 2015.
INITIAL TREATMENT OF HCV INFECTION

Initial Treatment of HCV Infection includes patients with chronic hepatitis C who have not been previously treated with IFN, PEG-IFN, RBV, or any HCV direct-acting antiviral (DAA) agent, whether experimental, investigational, or US Food and Drug Administration (FDA) approved.

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

A summary of recommendations for initial treatment is found in the BOX [2].

The level of evidence available to inform the best treatment decision for each patient varies, as does the strength of the recommendation, and is rated accordingly (see Methods Table 2 [3]). In addition, when treatment differs for a particular group, such as those infected with, specific HCV genotype or subtype, specific recommendations are given. A regimen is classified as "Recommended" when it is favored for most patients and "Alternative" when optimal in a particular subset of patients in that category. When a treatment is clearly inferior or is deemed harmful, it is classified as "Not Recommended." Unless otherwise indicated, such regimens should not be administered to patients with HCV infection. Specific considerations of persons with HIV/HCV coinfection [4], decompensated cirrhosis [5] (moderate or severe hepatic impairment; Child Turcotte Pugh [CTP] class B or C [6]), HCV infection post–liver transplant [7], and those with severe renal impairment [8] or end-stage renal disease (ESRD) are addressed in other sections of the Guidance.

When several regimens are offered at the same recommendation level they are listed in alphabetic order. In this case consideration of choice of regimen should be determined based on patient-specific data, including drug interactions. As always, patients receiving antiviral therapy require careful pretreatment assessment for comorbidities that may influence treatment response. All patients should have careful monitoring during treatment, particularly for anemia if RBV is included in the regimen. (See Monitoring Section [9])

I. Genotype 1

Three highly potent DAA oral combination regimens are recommended for HCV genotype 1-infected patients, although there are differences in the recommended regimens based on the HCV subtype. Patients with HCV genotype 1a tend to have higher relapse rates than patients with HCV genotype 1b
with certain regimens. Genotype 1 HCV infection that cannot be subtyped should be treated as genotype 1a infection.

The introduction of DAAs into HCV treatment regimens increased the risk of drug interactions with other concomitant medications used by patients, and now with combinations of DAAs, attention to drug interactions is all the more important (see Drug Interactions Table). The product prescribing information and other resources (eg, http://www.hep-druginteractions.org/ [10]) should be referenced regularly to ensure safety when prescribing DAA regimens. In particular, the daily fixed-dose combination of ledipasvir (90 mg) and sofosbuvir (400 mg) (hereafter ledipasvir/sofosbuvir) has a potential interaction with acid-suppressing medications, for example proton pump inhibitors, which may result in decreased absorption of ledipasvir and lower exposures. Because of over-the-counter access to acid-suppressing medications, a comprehensive assessment of all prescribed and over-the-counter medications is recommended prior to initiating treatment. If possible, acid-suppressing medications should be held prior to and during the HCV treatment period to optimize ledipasvir exposure. For patients in whom interruption of acid suppression is not possible, dosing of acid suppressants is recommended per the prescribing information.

Similarly, the daily fixed-dose combination of paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (hereafter paritaprevir/ritonavir/ombitasvir plus dasabuvir or PrOD) has a substantial interaction with the long-acting inhaled beta-adrenoceptor agonist salmeterol, and concurrent administration is not recommended owing to an increased risk of cardiovascular adverse events including QT segment prolongation.

A. Genotype 1a

Several options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 1a infection (listed in alphabetic order; see text).

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (1000 mg [<75 kg] to 1200 mg [>75 kg]) (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level B (no cirrhosis); Class IIa, Level B (cirrhosis)

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 12 weeks (no cirrhosis) or 24 weeks (cirrhosis) is
recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level A

Daily simeprevir (150 mg) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks (cirrhosis without the Q80K polymorphism) with or without weight-based RBV is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection [11] for patients on antiretroviral therapy.

For HCV genotype 1a–infected, treatment-naive patients, there are several regimens of comparable efficacy, as outlined above.

Daclatasvir in combination with sofosbuvir for the treatment of HCV genotype 1 infection can be recommended based on data from the phase III ALLY-2 trial, which assessed the efficacy and safety of daclatasvir and sofosbuvir for 12 weeks in patients coinfected with HIV and HCV (genotypes 1-4). (Wyles, 2015 [12]) One hundred twenty-three (83%) patients receiving 12 weeks of therapy in the trial were infected with HCV genotype 1. Eighty-three (54%) of these patients were treatment naive. The sustained virologic response (SVR) rate was 96% in treatment-naive patients with HCV genotype 1a infection (n=71) receiving 12 weeks of therapy. However, only 9 treatment-naive patients had cirrhosis. Similarly, in the phase IIb study of daclatasvir and sofosbuvir (A1444040) in 88 treatment-naive patients with HCV genotype 1a infection, 21 were treated for 24 weeks (11 with RBV) and 67 were treated for 12 weeks (33 with RBV), and there were no virologic relapses. However, there were only 14 patients with cirrhosis in the 12-week and 24-week study arms. (Sulkowski, 2014 [13]) Because patients with cirrhosis were not adequately represented in these studies, the optimal duration of treatment for patients with cirrhosis remains unclear. Cohort studies of a compassionate use program in Europe suggest that patients with cirrhosis may benefit from extension of therapy with daclatasvir and sofosbuvir to 24 weeks, with or without RBV. (Welzel, 2015 [14]); (de Ledinghen, 2015 [15]) The phase III ALLY-1 trial investigated daclatasvir and sofosbuvir with RBV (initial dose of 600 mg, then titrated) in 60 patients with advanced cirrhosis. (Poordad, 2015 [16]) Only 76% of patients with HCV genotype 1A (n=34) and 100% of patients with HCV genotype 1B (n=11) achieved an SVR at 12 weeks (SVR12). It is unclear how many treatment failures were among treatment-naive patients or those with CTP class A cirrhosis. More data are needed; however, owing to the risk of the emergence of resistance to nonstructural protein 5A (NS5A) inhibitor treatment at the time of failure, extending treatment to 24 weeks for all patients with HCV genotype 1a infection and cirrhosis is recommended, and the addition of RBV may be considered. In patients with favorable characteristics, a 12-week treatment course that includes weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) may be considered but is supported by limited data.

Ledipasvir/sofosbuvir was approved by the FDA for the treatment of HCV genotype 1 infection in treatment-naive patients based on 2 registration trials: ION-1(865 treatment-naive patients; those with
cirrhosis were included) and ION-3 (647 treatment-naive patients; those with cirrhosis were excluded). ION-1 investigated length of treatment (12 weeks vs 24 weeks) and the need for RBV. (Afdhal, 2014a [17]) SVR rate at 12 weeks (SVR12) was 97% to 99% across all arms, with no difference in SVR based on length of treatment, use of RBV, or HCV genotype 1 subtype. Sixteen percent of subjects enrolled were classified as having cirrhosis. There was no difference in SVR12 rate in those with cirrhosis (97%) versus those without cirrhosis (98%). ION-3 excluded patients with cirrhosis and investigated shortening therapy from 12 weeks to 8 weeks (with or without RBV). (Kowdley, 2014 [18]) SVR12 rate was 93% to 95% across all arms, with no difference in SVR in the intention-to-treat analysis. However, relapse rates were higher in the 8-week arms (20 of 431) regardless of RBV use compared with the 12-week arm (3 of 216). Post hoc analyses of the 2 RBV-free arms assessed baseline predictors of relapse and identified lower relapse rates in patients receiving 8 weeks of ledipasvir/sofosbuvir who had baseline HCV RNA levels below 6 million IU/mL (2%; 2 of 123), and was the same for patients with similar baseline HCV RNA levels who received 12 weeks (2%; 2 of 131). This analysis was not controlled and thus substantially limits the generalizability of this approach to clinical practice. Shortening treatment to less than 12 weeks for patients without cirrhosis should be done with caution and performed at the discretion of the practitioner.

ProOD plus weight-based RBV was approved by the FDA for the treatment of HCV genotype 1a infection in treatment-naive patients based on 3 registration trials: SAPPHIRE-I (322 treatment-naive patients with genotype 1a HCV infection without cirrhosis), PEARL-IV (305 treatment-naive patients with genotype 1a without cirrhosis), and TURQUOISE-II (261 treatment-naive and -experienced patients with HCV genotype 1a and cirrhosis). The SAPPHIRE-I trial reported a high SVR12 rate (95.3%) with 12 weeks of ProOD and RBV. (Feld, 2014 [19]) Overall, virologic failure was higher for patients with HCV genotype 1a (7 of 8 failures had genotype 1a) than patients with HCV genotype 1b (1 virologic failure). PEARL-IV was specifically designed to determine the role of ProOD with or without weight-based RBV for treatment-naive, HCV genotype 1a–infected patients without cirrhosis. (Ferenci, 2014 [20]) SVR12 was lower in the RBV-free arm than in the RBV-containing arm (90% vs 97%, respectively) owing to higher rates of virologic failure (7.8% vs 2%, respectively), confirming the need for weight-based RBV for patients with HCV genotype 1a. TURQUOISE-II enrolled treatment-naive and -experienced patients (261 patients with HCV genotype 1a) with CTP class A cirrhosis to receive either 12 weeks or 24 weeks of treatment with ProOD and RBV. Overall, SVR12 rates were 89% in the 12-week arm and 95% in the 24-week arm. (paritaprevir [21]/ritonavir [21]/ombitasvir [21] prescribing information [21]); (Poordad, 2014 [22]) This difference in SVR12 rate between arms was primarily driven by patients with null response to PEG-IFN and RBV; there was less difference in SVR rates in the patients with cirrhosis who were naive to therapy (92% and 95%, respectively). (paritaprevir/ritonavir [21]/ombitasvir [21] prescribing information [21]); (Poordad, 2014 [22])

In October 2015, the FDA released a warning [23] regarding the use of the PrOD or PrO (without dasabuvir) in patients with cirrhosis. (This statement is based on our review of the limited data available from the FDA and will be updated if and when more data become available.) PrOD and PrO are contraindicated in patients with Child Turcotte Pugh (CTP) class B or C hepatic impairment (decompensated liver disease). The manufacturer’s pharmacovigilance program reported rapid onset of liver injury and in some cases hepatic decompensation in patients with cirrhosis, including CTP class A compensated cirrhosis and decompensated cirrhosis, who were receiving PrOD or PrO. The liver injury and decompensating events occurred largely during the first 4 weeks of therapy and primarily involved a rapid increase in total and direct bilirubin, often associated with a concomitant increase in liver enzyme levels. In most cases, early recognition and prompt discontinuation of PrOD or PrO resulted in resolution of injury, although some patients, including at least 2 patients with CTP class A compensated cirrhosis, died or required liver transplantation. Although cirrhosis carries a 2% to 4% annual risk of hepatic
decompensation, the rapid onset of hepatic decompensation and in many cases its resolution with discontinuation of treatment with PrOD or PrO is suggestive of drug-induced liver injury. Although PrOD and PrO are contraindicated in patients with CTP class B or C cirrhosis and decompensated liver disease, predictors of these events in patients with CTP class A cirrhosis are currently unclear.

For patients with CTP class A cirrhosis, the unlikely but real possibility of drug-induced liver injury should be discussed with the patient. If the decision is made to initiate treatment with PrOD or PrO, close monitoring of total and direct bilirubin and transaminase levels every 1 week or 2 weeks for the first 4 weeks is recommended to ensure early detection of drug-induced liver injury. Also, educating patients about the importance of reporting systemic symptoms such as jaundice, weakness, and fatigue is strongly recommended. The regimen should be discontinued immediately if drug-induced liver injury is detected. If a patient is already taking PrOD or PrO and is tolerating the regimen, laboratory monitoring as above without discontinuation is recommended unless there are signs or symptoms of liver injury. If heightened monitoring cannot be provided in the first 4 weeks of therapy with PrOD or PrO in patients with cirrhosis, the use of these regimens is not recommended.

The OPTIMIST-1 and -2 trials investigated the safety and efficacy of simeprevir (150 mg) and sofosbuvir (400 mg) in chronically infected patients with HCV genotype 1 without and with cirrhosis, respectively. In the OPTIMIST-1 study, 310 treatment-naive and -experienced patients without cirrhosis were randomly assigned to 12 versus 8 weeks of the simeprevir plus sofosbuvir regimen. (Kwo, 2015 [24]) The overall SVR12 rate was 97% (150/155) versus 83% (128/155), respectively, with a statistically significantly greater relapse rate in the 8-week arm. In the 12-week arm there was no difference in SVR12; treatment-naive and -experienced patients achieved SVR12 rates of 97% and 95%, respectively. There was also no difference in SVR12 based on genotype 1 subtype or presence of the baseline Q80K resistance mutation. A post hoc analysis suggested that patients with a baseline HCV RNA level below 4 million IU/mL achieved the same SVR12 rate (96%) regardless of the length of treatment. This defined baseline HCV RNA level is different than the 6 million IU/mL defined in the ION-3 trial, suggesting these posthoc analysis cut-offs are arbitrary and unlikely to translate to clinical practice. At this time an 8-week regimen of simeprevir and sofosbuvir cannot be recommended.

The OPTIMIST-2 study was a single arm, open-label trial investigating 12 weeks of simeprevir plus sofosbuvir in 103 treatment-naive and -experienced patients with cirrhosis. (Lawitz, 2015 [25]) The overall SVR12 rate was 83% (86/103), with 88% (44/50) of treatment-naive and 79% (42/53) of treatment-experienced patients achieving SVR12. In addition, patients infected with HCV genotype 1a and 1b without the Q80K mutation had similar SVR12 rates (84% [26/31] and 92% [35/38], respectively). However, patients with HCV genotype 1a infection and the Q80K mutation had lower SVR12 rates (74% [25/34]). Thus, extending treatment to 24 weeks, with or without RBV, is recommended for patients with cirrhosis receiving simeprevir plus sofosbuvir to decrease the risk of relapse. At this time it is unclear whether extending treatment, with or without the addition of RBV, will increase efficacy in genotype 1a–infected patients with the Q80K mutation. Given the lower response rate in patients with cirrhosis, it is reasonable to avoid this regimen in patients with this baseline mutation.

The safety profiles of all the recommended regimens above are excellent. Across numerous phase III programs, less than 1% of patients without cirrhosis discontinued treatment early and adverse events were mild. Most adverse events occurred in RBV-containing arms. Discontinuation rates were higher for patients with cirrhosis (approximately 2% for some trials) but still very low.

B. Genotype 1b
Several options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 1b infection (listed in alphabetic order; see text).

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level B (no cirrhosis); Class IIa, Level B (cirrhosis)

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection [11] for patients on antiretroviral therapy.

For HCV genotype 1b-infected, treatment-naive patients, there are 4 regimens of comparable efficacy, as outlined above.

There is no measurable difference demonstrated to date in treatment response to daclatasvir and sofosbuvir or ledipasvir/sofosbuvir for HCV genotype 1 subtypes, thus the supporting evidence remains the same as for HCV genotype 1a-infected patients (see **Genotype 1**). In the ALLY-2 arm of daclatasvir and sofosbuvir for 12 weeks in treatment-naive patients, only 12 were genotype 1b and all achieved SVR12. ([Wyles, 2015](#)) Furthermore, in the ALLY-1 study all 11 genotype 1b infected patients with advanced cirrhosis achieved SVR12. Due to the limited numbers of genotype 1b patients represented in
the phase 3 trials of this regimen, there is not enough evidence to support a different approach by subtype at this time.

ProD (plus RBV for those with cirrhosis) was approved by the FDA for the treatment of HCV genotype 1b infection in treatment-naive patients based on 3 registration trials: SAPPHIRE-I (151 treatment-naive patients with HCV genotype 1b and without cirrhosis), PEARL-III (419 treatment-naive patients, all with genotype 1b and without cirrhosis), and TURQUOISE-II (119 treatment-naive and -experienced patients with genotype 1b with cirrhosis). SAPPHIRE-I reported a high SVR12 rate (98%) with 12 weeks of ProD and RBV in patients with HCV genotype 1b. (Feld, 2014 [19]) Given the high SVR12 rates seen in SAPPHIRE-I, PEARL-III was specifically designed to determine the role of weight-based RBV with ProD in treatment-naive patients with HCV genotype 1b without cirrhosis. (Ferenci, 2014 [20]) SVR12 rate was 99% in both arms, confirming that there is no added benefit from the use of weight-based RBV for patients without cirrhosis who have HCV genotype 1b infection. TURQUOISE-II enrolled treatment-naive and -experienced patients with CTP class A cirrhosis to receive either 12 weeks or 24 weeks of treatment with ProD and RBV. Overall, SVR12 rates were 98.5% in the 12-week arm and 100% in the 24-week arm. (Poordad, 2014 [22]) To address the need for RBV with this regimen in patients with HCV genotype 1b and cirrhosis, the TURQUOISE-III study evaluated the safety and efficacy of ProD without RBV for 12 weeks in patients with HCV genotype 1b infection and compensated cirrhosis. Sixty patients (62% men, 55% treatment experienced, 83% with the IL28B non-CC genotype, 22% with platelet counts <90 x 10^9/L, and 17% with albumin levels <3.5 g/dL) were enrolled. All patients completed treatment, and all patients achieved an SVR12. On the basis of this study, treating patients with HCV genotype 1b with ProD but without RBV is recommended, regardless of prior treatment experience or presence of cirrhosis. (Feld, 2015 [26])

To date, there is no measurable difference demonstrated in treatment response to simeprevir plus sofosbuvir for HCV genotype 1 subtypes (with the exception of patients with genotype 1a with cirrhosis who also have the baseline Q80K mutation), thus the supporting evidence remains the same as for HCV genotype 1a–infected patients (see Genotype 1 [27]).

The safety profiles to date of all recommended regimens above are excellent. Across numerous phase III programs, less than 1% of patients without cirrhosis discontinued treatment early and adverse events were mild. Most adverse events occurred in RBV-containing arms. Discontinuation rates were higher for patients with cirrhosis (approximately 2% for some trials) but still very low.

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 1.

- Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks. **Rating:** Class IIb, Level A
- PEG-IFN and RBV with or without sofosbuvir, simeprevir, telaprevir, or boceprevir for 12 weeks to 48 weeks. **Rating:** Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A

*See sections on HIV/HCV coinfection [4], decompensated cirrhosis [5], liver transplantation [7], and renal impairment [8].

Although regimens of sofosbuvir and RBV or PEG-IFN and RBV plus sofosbuvir, simeprevir, telaprevir, or boceprevir for 12 weeks to 48 weeks (some using response-guided therapy) are also FDA approved, they
are inferior to the current recommended regimens. Most of the IFN-containing regimens are associated with higher rates of serious adverse events (eg, anemia and rash), longer treatment duration, high pill burden, numerous drug-drug interactions, more frequent dosing, higher intensity of monitoring for continuation and stopping of therapy, and the requirement to be taken with food or with high-fat meals. Although the phase III NEUTRINO trial reported the highest SVR rate (89%) for an IFN-containing regimen (sofosbuvir [400 mg daily]) in combination with PEG-IFN 2a (180 μg by subcutaneous injection weekly) and weight-based RBV in HCV genotype 1 infection and limited exposure to IFN to just 12 weeks, the safety and tolerability profile limits its usefulness in the setting of FDA-approved, highly efficacious oral DAA combinations. (Lawitz, 2013a [28])

PEG-IFN and RBV for 48 weeks for treatment-naive patients infected with HCV genotype 1 has been superseded by treatments incorporating DAAs and should not be used.

II. Genotype 2

Recommended regimen for treatment-naive patients with HCV genotype 2 infection.

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 2 infection who cannot tolerate RBV.

Rating: Class IIa, Level B

Daily sofosbuvir (400 mg) and weight-based RBV for 12 weeks is recommended for treatment-naive patients with HCV genotype 2 infection.

Rating: Class I, Level A

Extending treatment to 16 weeks is recommended in patients with cirrhosis.

Rating: Class IIb, Level C

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection [11] for patients on antiretroviral therapy.

Daclatasvir with sofosbuvir for 12 weeks was approved by the FDA for the treatment of HCV genotype 3 infection in patients without and with cirrhosis. Although daclatasvir with sofosbuvir was not approved for the treatment of HCV genotype 2 infection, daclatasvir maintains adequate activity against HCV genotype 2 despite a 50% effective concentration (EC₅₀) that increases by several logs in the presence of the prevalent M31 polymorphism. (Wang, 2014 [29]) In fact, daclatasvir with sofosbuvir was associated
with high rates of SVR in treatment-naive patients with HCV genotype 2 infection with both 12 weeks and 24 weeks of therapy. (Wyles, 2015 [12]); (Sulkowski, 2014 [13]) It is unclear if there is a subgroup of HCV genotype 2–infected patients who would benefit from extending treatment to 24 weeks. For patients who require treatment but cannot tolerate RBV, an alternative regimen of daclatasvir with sofosbuvir for 12 weeks is recommended and consideration of extending treatment to 24 weeks for patients with poor baseline characteristics (cirrhosis) is reasonable.

Sofosbuvir (400 mg daily) was combined with weight-based RBV for treatment-naive patients with HCV genotype 2 infection in 3 clinical trials, each of which enrolled patients with HCV genotype 2 or 3: FISSION, POSITRON, and VALENCE. (Lawitz, 2013a [28]); (Jacobson, 2013c [30]); (Zeuzem, 2013c [31]) The FISSION study randomized patients to receive daily PEG-IFN and RBV (800 mg) for 24 weeks or sofosbuvir plus daily weight-based RBV for 12 weeks. (Lawitz, 2013a [28]) The SVR rate was higher (94%) in patients who received sofosbuvir plus RBV than in those who received PEG-IFN and RBV (78%; 52/67). Across all 3 trials, 201 of the 214 (94%) patients with HCV genotype 2 achieved SVR with sofosbuvir plus RBV. Among patients who did not achieve SVR, sofosbuvir resistance–associated variants (RAVs) were not detected. (US FDA, 2013a [32]) Based on real-world data from Trio Health, lower response rates were seen in treatment-naive patients with cirrhosis than in those without cirrhosis. (Dieterich, 2014a [33]) Although data to support extension of therapy are not yet available for treatment-naive patients with HCV genotype 2 infection, longer treatment duration improves SVR in treatment-experienced patients with cirrhosis. (Jacobson, 2013c [30]); (Foster, 2015 [34]) Owing to the small numbers of patients with HCV genotype 2 infection and cirrhosis enrolled in the registration trials, several phase IIIb studies are ongoing to specifically determine the appropriate length of treatment for this subgroup of patients (NCT01962441, NCT 02128542). Until these data are available, extending treatment from 12 weeks to 16 weeks in HCV genotype 2–infected patients with cirrhosis is recommended.

Alternative regimens for treatment-naive patients with HCV genotype 2 infection.

None.

Several other available DAAs have activity in vivo against HCV genotype 2. Simeprevir has moderate potency against HCV genotype 2 but has not formally been tested in combination with sofosbuvir in HCV genotype 2 infection. (Moreno, 2012 [35])

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 2.

- **PEG-IFN and RBV for 24 weeks. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir-, boceprevir-, or ledipasvir-containing regimens. Rating:** Class III, Level A

PEG-IFN 2a (180 µg weekly) or PEG-IFN 2b (1.5 µg/kg weekly) plus RBV (800 mg daily) for 24 weeks was
compared with sofosbuvir (400 mg daily) plus weight-based RBV in the FISSION trial. (Lawitz, 2013a [28]) The SVR12 rate achieved with PEG-IFN and RBV was lower than that achieved with sofosbuvir and RBV overall (78% and 95%, respectively) and in the subgroups of patients with or without cirrhosis. Safety and tolerability of PEG-IFN and RBV was inferior to that observed with sofosbuvir and RBV, with greater frequency of reported adverse events and laboratory abnormalities and a higher rate of treatment discontinuation owing to adverse events. Further, therapy with PEG-IFN and RBV is 12 weeks longer than with sofosbuvir plus RBV.

Because of its poor activity in vitro and in vivo, boceprevir should not be used as therapy for patients with HCV genotype 2 infection. Although telaprevir plus PEG-IFN and RBV has antiviral activity against HCV genotype 2, (Foster, 2011 [36]) the additional adverse effects and longer duration of therapy required do not support the use of this regimen. Similarly, although ledipasvir has adequate activity against HCV genotype 2, this is lost in the presence of the highly prevalent L31M polymorphism and thus is not recommended for treatment of HCV genotype 2 infection. (Nakamoto, 2014 [37])

III. Genotype 3

Recommended regimens for treatment-naive patients with HCV genotype 3 infection.

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 3 infection.

Rating: Class I, Level A (no cirrhosis); Class IIa, Level C (cirrhosis)

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible, treatment-naive patients with HCV genotype 3 infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection [11] for patients on antiretroviral therapy.

Daclatasvir with sofosbuvir for 12 weeks was approved by the FDA for treatment of HCV genotype 3 infection. The recommendation is based on ALLY-3, a phase III study of the once-daily NS5A inhibitor daclatasvir plus sofosbuvir for 12 weeks; the study included 101 treatment-naive patients and demonstrated an SVR12 rate of 90%. In treatment-naive patients without cirrhosis (Metavir F0-F3), 97% achieved SVR12, and in treatment-naive patients with cirrhosis (Metavir F4), 58% achieved SVR12. (Nelson, 2014 [38]). This suggests that patients with genotype 3-infection and cirrhosis are likely to benefit from an extension of therapy to 24 weeks. This has been confirmed in cohort studies, including
the European compassionate use program, which reported SVR12 rates of 76% versus 88% when daclatasvir and sofosbuvir was used for 12 weeks and 24 weeks in HCV genotype 3-infected patients with cirrhosis, respectively. (Hezode, 2015 [39])

The triple-arm, controlled BOSON study (Foster, 2015 [34]) randomly assigned treatment-naive and -experienced patients with HCV genotype 3 infection to either sofosbuvir and RBV for 16 weeks (n=196) or 24 weeks (n=199) or sofosbuvir plus PEG-IFN and RBV for 12 weeks (n=197). The SVR12 rate among treatment-naive patients was 77% (70/91), 88% (83/94), and 95% (89/94) for each arm, respectively. The greater SVR12 in the IFN-containing arm was noted regardless of evidence of cirrhosis with SVR12 rates of 83% (58/70) versus 57% (12/21), 90% (65/72) versus 82% (18/22), and 96% (68/71) versus 91% (21/23), for those in each arm without versus with cirrhosis, respectively. Although the regimen of sofosbuvir plus PEG-IFN and RBV has greater adverse event rates and requires an increase in monitoring, the shortened 12 weeks of treatment coupled with superior results makes this the recommended regimen for IFN-eligible patients, until superior IFN-free options are defined.

Alternative regimen for treatment-naive patients with HCV genotype 3 infection.

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is an alternative regimen for treatment-naive patients with HCV genotype 3 infection who are IFN-ineligible.

Rating: Class I, Level A

The VALENCE study, which enrolled patients with HCV genotype 2 or 3, assessed the efficacy and safety of sofosbuvir (400 mg daily) plus weight-based RBV for 24 weeks. This trial included 250 treatment-naive (42%) and -experienced (58%) subjects with HCV genotype 3 infection. The overall SVR12 rate was 84% and was higher among treatment-naive than -experienced patients (93% vs 77%, respectively). (Zeuzem, 2014 [40]) These results suggest that higher response rates can be achieved with a 24-week regimen of sofosbuvir plus RBV than those reported for HCV genotype 3-infected participants receiving 12- or 16-week regimens in the FISSION (Lawitz, 2013a [28]) (12 weeks, SVR12 rate: 63%), POSITRON, (Jacobson, 2013c [30]) (12 weeks, SVR 12 rate: 61%) and FUSION (12 weeks, SVR12 rate: 30%; 16 weeks, SVR12 rate: 62%) trials. The primary reason for the higher SVR rate with extended therapy among treatment-naive patients was due to a reduction in the relapse rate from 40% to 5%. In a subanalysis, response rates were similarly high among those with (n=45) and without (n=100) cirrhosis (92% and 93%, respectively). These data were confirmed in the randomized controlled BOSON trial as described above. (Foster, 2015 [34]) In the BOSON trial, this 24-week regimen had lower SVR rates than the 12-week regimen of sofosbuvir plus PEG-IFN and RBV in treatment-naive patients, regardless of the presence of cirrhosis. Therefore, this is an alternative regimen for patients who cannot take IFN.

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 3 infection.

- PEG-IFN and RBV for 24 weeks to 48 weeks. **Rating:** Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A
Telaprevir-, boceprevir-, or simeprevir-based regimens should not be used for patients with genotype 3 HCV infection. Rating: Class III, Level A

Although the combination of PEG-IFN and RBV is an FDA-approved regimen for HCV genotype 3 infection, its less acceptable adverse effect profile requires more intensive monitoring and its overall lower efficacy makes it less desirable than the recommended regimen.

Because of their limited in vitro and in vivo activity against HCV genotype 3, boceprevir, telaprevir, and simeprevir should not be used as therapy for patients with HCV genotype 3 infection.

Very limited phase II data are available from a single-center study (ELECTRON-II) that examined ledipasvir/sofosbuvir with (n=26) or without (n=25) RBV for 12 weeks in treatment-naive patients with HCV genotype 3 infection, 15% of whom had cirrhosis. All 26 (100%) patients in the RBV-containing arm achieved SVR12 compared with 16 of 25 (64%) of those in the RBV-free arm. Although these data raise the possibility that the addition of ledipasvir to sofosbuvir and RBV may shorten the course of therapy for persons with HCV genotype 3 infection, the high EC$_{50}$ of ledipasvir for HCV genotype 3 infection (Wong, 2013 [41]; Kohler, 2014 [42]) and the homogenous patient population studied limit the generalizability of this study. Until further data are available to confirm these findings, a recommendation for use of this regimen cannot be made. (Gane, 2013b [43])

IV. Genotype 4

Three options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 4 infection (listed in alphabetic order; see text).

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 4 infection.

Rating: Class IIb, Level B

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) and weight-based RBV for 12 weeks is recommended for treatment-naive patients with HCV genotype 4 infection.

Rating: Class I, Level B

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for treatment-naive patients with HCV genotype 4 infection.
The SYNERGY trial was an open-label study evaluating 12 weeks of ledipasvir/sofosbuvir in 21 HCV genotype 4–infected patients, of whom 60% were treatment naive and 43% had advanced fibrosis (Metavir stage F3 or F4). (Kohli, 2015 [44]) One patient took the first dose and then withdrew consent. All of the 20 patients who completed treatment achieved an SVR12; thus, the SVR12 rate was 95% in the intention-to-treat analysis and 100% in the per-protocol analysis. Abergel and colleagues reported data from an open-label single-arm study including 22 HCV genotype 4–infected, treatment-naive patients (only 1 with cirrhosis) with an SVR12 rate of 95% (21/22). (Abergel, 2015 [45]) These 2 pilot studies support the use of this regimen in patients with HCV genotype 4 infection.

PEARL-I was an open-label phase IIb study that included a cohort of 86 treatment-naive patients with HCV genotype 4 infection without cirrhosis who received 12 weeks of the daily fixed-dose combination of paritaprevir/ritonavir/ombitasvir (PrO) with or without weight-based RBV. SVR12 rates were 100% (42/42) in the group receiving RBV and 90.9% (40/44) in the group not receiving RBV. Adverse effects were generally mild, with headache, asthenia, fatigue, and nausea most commonly reported. There were no discontinuations owing to adverse events. (Hezode, 2015 [39])

Several studies support the use of sofosbuvir and RBV in treatment-naive patients with HCV genotype 4 infection. In a small study of Egyptian patients in the United States who were treated with sofosbuvir plus weight-based RBV, SVR12 was achieved in 79% (11/14) and 100% (14/14) of these treatment-naive patients treated for 12 weeks and 24 weeks, respectively. (Ruane, 2014 [46]) In a phase II study in Egypt, patients with HCV genotype 4 infection received daily sofosbuvir plus weight-based RBV for 12 weeks or 24 weeks; among treatment-naive patients SVR12 rates were 84% (21/25) and 92% (22/24), respectively. (Doss, 2015 [47]) PHOTON-2, an open-label study of HIV/HCV-coinfected patients, included 31 treatment-naive patients with HCV genotype 4 infection who received daily sofosbuvir plus weight-based RBV for 24 weeks. In this study, 84% of patients (26/31) achieved SVR12. (Molina, 2015 [48])

Alternative regimen for treatment-naive patients with HCV genotype 4 infection.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an acceptable regimen for treatment-naive patients with HCV genotype 4 infection.

Rating: Class II, Level B

In the phase III NEUTRINO trial, (Lawitz, 2013a [28]) 28 treatment-naive patients with HCV genotype 4 infection were treated with sofosbuvir (400 mg daily) plus PEG-IFN 2a (180 µg weekly) and weight-based RBV for 12 weeks. Of the 28 patients with HCV genotype 4 infection, 27 (96%) achieved SVR12. The single patient who did not achieve SVR had cirrhosis and had a relapse after therapy. The adverse event profile was similar to that associated with PEG-IFN and RBV therapy.
The following regimens are NOT recommended for treatment-naive patients with HCV genotype 4 infection.

- **PEG-IFN and RBV with or without simeprevir for 24 weeks to 48 weeks. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir- or boceprevir-based regimens. Rating:** Class III, Level A

PEG-IFN and RBV for 48 weeks was the previously recommended regimen for patients with HCV genotype 4 infection. (Ghany, 2009 [49]); (AASLD/IDSA/IAS-USA, 2014 [50]) Adding sofosbuvir (400 mg daily) to PEG-IFN and RBV increases response rates and markedly shortens therapy with no apparent additional adverse effects. The addition of simeprevir to PEG-IFN and RBV increases response rates but has inferior SVR rates to the other available regimens and requires a longer duration of PEG-IFN and RBV, which increases the risk of adverse events and thus is no longer recommended. (Moreno, 2013b [51])

Because of their limited activity against genotype 4 HCV in vitro and in vivo, boceprevir and telaprevir should not be used as therapy for patients with HCV genotype 4 infection.

V. Genotype 5 or 6

Few data are available to help guide decision making for patients infected with HCV genotype 5 or 6. Nonetheless, ledipasvir/sofosbuvir is recommended. (Kapoor, 2014 [52]); (Abergel, 2015 [45]) (Gane, 2014 [53])

Recommended regimen for treatment-naive patients with HCV genotype 5 or 6 infection.

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 5 or 6 infection.

Rating: Class IIa, Level B

Although there are limited data on patients with HCV genotype 5 infection, the in vitro activity for sofosbuvir and ledipasvir is quite good with EC_{50} of 15 nM and 0.081 nM, respectively. Abergel and colleagues reported data from an open-label, single arm study that included 41 HCV genotype 5–infected patients with an overall SVR12 rate of 95% (39/41). (Abergel, 2015 [45]) The SVR12 rate was also 95% specifically in treatment-naive patients (20/21), of whom only 3 had cirrhosis but who all 3 achieved SVR12.
infection.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative regimen for treatment-naive patients with HCV genotype 5 or 6 infection.

Rating: Class Ila, Level B

In the phase III NEUTRINO trial, (Lawitz, 2013a [28]) treatment-naive patients with HCV genotypes 1 (n=291), 4 (n=28), 5 (n=1), and 6 (n=6) were treated with sofosbuvir (400 mg daily) plus PEG-IFN 2a (180 µg weekly) and weight-based RBV for 12 weeks. All 6 patients with HCV genotype 6 and the 1 patient with HCV genotype 5 achieved SVR12. The adverse event profile in these patients and in the larger study population was similar to that seen with PEG-IFN and RBV therapy.

Ledipasvir has in vitro activity against most HCV genotype 6 subtypes (except for 6e). (Wong, 2013 [41]; Kohler, 2014 [42]) A small, 2-center, open-label study (NCT01826981) investigated the safety and in vivo efficacy of ledipasvir/sofosbuvir for 12 weeks in treatment-naive and -experienced patients with HCV genotype 6 infection. Twenty-five patients (92% were treatment naive) who were primarily Asian (88%) had infection from 7 different subtypes (32%, 6a; 24%, 6e; 12%, 6l; 8%, 6m; 12%, 6p; 8%, 6q; 4%, 6r). Two patients (8%) had cirrhosis. The SVR12 rate was 96% (24/25), and the 1 patient who experienced relapse had discontinued therapy at week 8 because of drug use. No patient discontinued treatment owing to adverse events.

In the phase III NEUTRINO trial, (Lawitz, 2013a [28]) treatment-naive patients with HCV genotypes 1 (n=291), 4 (n=28), 5 (n=1), and 6 (n=6) were treated with sofosbuvir (400 mg daily) plus PEG-IFN 2a (180 µg weekly) and weight-based RBV for 12 weeks. All 6 patients with HCV genotype 6 and the 1 patient with HCV genotype 5 achieved SVR12. The adverse event profile in these patients and in the larger study population was similar to that seen with PEG-IFN and RBV therapy.

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 5 or 6 infection.

- **PEG-IFN and RBV with or without simeprevir for 24 weeks to 48 weeks. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir- or boceprevir-based regimens. Rating:** Class III, Level A

PEG-IFN and RBV for 48 weeks was the previous alternative regimen for patients infected with HCV genotype 5, but the availability of recommended regimens that substantially reduce exposure to IFN and RBV make this regimen a poor option. Because of their limited activity against genotypes 5 and 6 HCV in vitro and in vivo, boceprevir and telaprevir should not be used as therapy for patients with HCV genotype 5 or 6 infection.

Mixed Genotypes
Rarely, genotyping assays may indicate the presence of a mixed infection (e.g., genotypes 1a and 2). Treatment data for mixed genotypes with direct-acting antivirals are sparse, and awaiting availability of a pangenotypic regimen may be considered. Until then, when treatment is necessary, the choice of antiviral combination and duration of treatment should maximize efficacy against each genotype represented in the assay. When the correct combination or duration is unclear, expert consultation should be sought.

Initial Treatment Table: Drug Interactions With Direct-Acting Antivirals and Selected Concomitant Medications

<table>
<thead>
<tr>
<th>Concomitant Medications</th>
<th>Daclatasvir</th>
<th>Ledipasvir</th>
<th>Paritaprevir / Ritonavir / Ombitasvir + Dasabuvir</th>
<th>Simeprevir</th>
<th>Sofosbuvir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid-reducing agents*</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfuzosin/tamsulosin</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Antiretrovirals*</td>
<td>See HIV section</td>
</tr>
<tr>
<td>Azole antifungals*</td>
<td>X**</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Buprenorphine/naloxone</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Calcineurin inhibitors*</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Calcium channel blockers*</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cisapride</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Digoxin</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ergot derivatives</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ethinyl estradiol-containing products</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Furosemide</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Glucocorticoids*</td>
<td>X</td>
<td></td>
<td>X (inhaled, intranasal)</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Herbals
- St. John’s wort
- Milk thistle

Macrolide antimicrobials*
- **X**

Other antiarrythmics*
- X

Phosphodiesterase type 5 inhibitors*
- X

Pimozide
- X

Rifamycin antimicrobials*
- **X**

Salmeterol
- X

Sedatives*
- X

Simeprevir
- X

Statins*
- **X**

*Some drug interactions are not class specific; see product prescribing information for specific drugs within a class.

**Requires a daclatasvir dose modification

Changes made on December 11, 2015
Several options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 1a infection (listed in alphabetic order; see text).

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (1000 mg [<75 kg] to 1200 mg [>75 kg]) (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level B (no cirrhosis); Class IIa, Level B (cirrhosis)

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 12 weeks (no cirrhosis) or 24 weeks (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1a infection.
Daily simeprevir (150 mg) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks (cirrhosis without the Q80K polymorphism) with or without weight-based RBV is recommended for treatment-naive patients with HCV genotype 1a infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV co-infection (1) for patients on antiretroviral therapy.

Several options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 1b infection (listed in alphabetic order; see text).

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level B (no cirrhosis); Class IIa, Level B (cirrhosis)

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 1b infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing
The following regimens are NOT recommended for treatment-naive patients with HCV genotype 1.*

- Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks. Rating: Class IIb, Level A
- PEG-IFN and RBV with or without sofosbuvir, simeprevir, telaprevir, or boceprevir for 12 weeks to 48 weeks. Rating: Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A

*See sections on HIV/HCV coinfection [1], decompensated cirrhosis [3], liver transplantation [4], and renal impairment [5].

Recommended regimen for treatment-naive patients with HCV genotype 2 infection.

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 2 infection who cannot tolerate RBV.

Rating: Class IIa, Level B

Daily sofosbuvir (400 mg) and weight-based RBV for 12 weeks is recommended for treatment-naive patients with HCV genotype 2 infection.

Rating: Class I, Level A

Extending treatment to 16 weeks is recommended in patients with cirrhosis.

Rating: Class IIb, Level C

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection [1] for patients on antiretroviral therapy.

Alternative regimens for treatment-naive patients with HCV genotype 2 infection.

None.

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 2.

- PEG-IFN and RBV for 24 weeks. Rating: Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A
- Telaprevir-, boceprevir-, or ledipasvir-containing regimens. Rating: Class III, Level A
Recommended regimens for treatment-naive patients with HCV genotype 3 infection.

Daily daclatasvir (60 mg*) and sofosbuvir (400 mg) for 12 weeks (no cirrhosis) or 24 weeks with or without weight-based RBV (cirrhosis) is recommended for treatment-naive patients with HCV genotype 3 infection.

Rating: Class I, Level A (no cirrhosis); Class IIa, Level C (cirrhosis)

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible, treatment-naive patients with HCV genotype 3 infection.

Rating: Class I, Level A

*The dose of daclatasvir may need to increase or decrease when used concomitantly with cytochrome P450 3A/4 inducers and inhibitors, respectively. Please refer to the prescribing information and the section on HIV/HCV coinfection\(^1\) for patients on antiretroviral therapy.

Alternative regimen for treatment-naive patients with HCV genotype 3 infection.

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is an alternative regimen for treatment-naive patients with HCV genotype 3 infection who are IFN-ineligible.

Rating: Class I, Level A

The following regimens are NOT recommended for treatment-naive patients with HCV genotype 3 infection.

- **PEG-IFN and RBV for 24 weeks to 48 weeks. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir-, boceprevir-, or simeprevir-based regimens should not be used for patients with genotype 3 HCV infection. Rating:** Class III, Level A

Three options with similar efficacy in general are recommended for treatment-naive patients with HCV genotype 4 infection (listed in alphabetic order; see text).

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 4 infection.

Rating: Class IIb, Level B

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) and weight-based RBV for 12 weeks is
Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for treatment-naive patients with HCV genotype 4 infection.

Rating: Class I, Level B

Alternative regimen for treatment-naive patients with HCV genotype 4 infection.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an acceptable regimen for treatment-naive patients with HCV genotype 4 infection.

Rating: Class II, Level B

The following regimens are **NOT** recommended for treatment-naive patients with HCV genotype 4 infection.

- PEG-IFN and RBV with or without simeprevir for 24 weeks to 48 weeks. **Rating:** Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A
- Telaprevir- or boceprevir-based regimens. **Rating:** Class III, Level A

Recommended regimen for treatment-naive patients with HCV genotype 5 or 6 infection.

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for treatment-naive patients with HCV genotype 5 or 6 infection.

Rating: Class IIa, Level B

Alternative regimen for treatment-naive patients with HCV genotype 5 or 6 infection.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative regimen for treatment-naive patients with HCV genotype 5 or 6 infection.

Rating: Class IIa, Level B

The following regimens are **NOT** recommended for treatment-naive patients with HCV genotype 5 or 6 infection.

- PEG-IFN and RBV with or without simeprevir for 24 weeks to 48 weeks. **Rating:** Class IIb,
Level A

- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir- or boceprevir-based regimens. Rating:** Class III, Level A

Changes made on August 7, 2015.
RETREATMENT OF PERSONS IN WHOM PRIOR THERAPY HAS FAILED

Expansions and notes for abbreviations used in this section can be found in Methods Table 3.[1]

A summary of recommendations for retreatment is found in the BOX [2].

This section provides guidance on the retreatment of a person with chronic HCV infection in whom prior therapy has failed.

The level of the evidence supporting the best treatment for each patient and the strength of the recommendation vary, and are rated in the same manner as the other sections on initial treatment of treatment-naive patients (Methods Table 2 [3]). In addition, specific recommendations are given when treatment differs for a particular group (e.g., those infected with various genotypes). A regimen is classified as "Recommended" when it is favored for most patients or "Alternative" when it might be optimal in a particular subset of patients in that category. When a treatment is clearly inferior or should not be used, it is classified as "Not Recommended." Unless otherwise indicated, such regimens should not be administered to patients with HCV infection. Specific considerations of persons with HIV/HCV coinfection [4], decompensated cirrhosis [5] (moderate or severe hepatic impairment; Child Turcotte Pugh [CTP] class B or C [6]), HCV infection post-liver transplant [7], and those with severe renal impairment [8] or end-stage renal disease are addressed in other sections of the Guidance.

When several regimens are offered at the same recommendation level, choice of regimen should be based on patient-specific data, including potential drug interactions. As always, patients receiving direct-acting antiviral (DAA) therapy require careful pretreatment assessment for comorbidities that may influence treatment response. All patients should have careful monitoring during treatment, particularly for anemia if RBV is included in the regimen. (See Monitoring Section [9])

I. Genotype 1

Three highly potent oral DAA combination regimens are recommended for patients with HCV genotype 1 infection, although there are differences in the recommended regimens based on the viral subtype. With certain treatment regimens, patients infected with genotype 1a may have higher rates of virologic failure than those infected with genotype 1b. HCV genotype 1 infection that cannot be subtyped should be
treated as genotype 1a infection.

The introduction of DAAs into HCV treatment regimens increased the risk of drug interactions with other concomitant medications used by patients, and now with combinations of DAAs, attention to drug interactions is all the more important (see Drug Interactions Table [10]). The product prescribing information and other resources (eg, http://www.hep-druginteractions.org [11]) should be referenced regularly to ensure safety when prescribing DAA regimens. In particular, the daily fixed-dose combination of ledipasvir (90 mg) and sofosbuvir (400 mg) (hereafter ledipasvir/sofosbuvir) has a potential interaction with acid-suppressing medications (eg, proton pump inhibitors) which may result in decreased absorption of ledipasvir and lower exposures. Because of over-the-counter access to acid-suppressing medications, a comprehensive assessment of all prescribed and over-the-counter medications is recommended prior to initiating treatment. If possible, acid-suppressing medications should be held prior to and during the HCV treatment period when ledipasvir is used to optimize ledipasvir exposure. For patients in whom interruption of acid suppression is not possible, use of another regimen or change in dosing of acid suppressants is recommended per the prescribing information.

Several options with similar efficacy in general are recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed (listed in alphabetic order; see text).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dasabuvir (250 mg) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [>75 kg]) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.
Several options with similar efficacy are recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed (listed in alphabetic order; see text).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class Ia, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class Ia, Level B

Recommended regimens for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis [6], in whom prior PEG-IFN and RBV treatment has failed.

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis [6], in whom prior PEG-IFN and RBV treatment has failed.
Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis \[6\], in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) plus weight-based RBV for 12 weeks is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis \[6\], in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level B

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 24 weeks is recommended for patients with HCV genotype 1a infection and for 12 weeks without RBV for patients with HCV genotype 1b infection who have compensated cirrhosis \[6\], in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) with or without weight-based RBV for 24 weeks is recommended for patients with HCV genotype 1a infection who are negative for the Q80K variant by commercially available resistance assays and for patients with HCV genotype 1b infection, in whom prior PEG-IFN and RBV treatment has failed. Alternative regimens should be used for patients with compensated cirrhosis \[6\] and HCV genotype 1a infection in whom the Q80K variant is present.

Rating: Class Ila, Level B

The combination of daclatasvir and sofosbuvir has been studied in HCV genotype 1 treatment–experienced patients who have previously been treated with PEG-IFN and RBV in 2 observational early access programs in the United Kingdom and France. (Foster, 2015); (Pol, 2015); (Foster, 2015b) In the French cohort, patients were treated with daclatasvir and sofosbuvir with or without RBV for 12 weeks or 24 weeks. In patients treated with daclatasvir and sofosbuvir alone, a numerically higher rate of sustained virologic response at 4 weeks (SVR4) was seen in those treated for 24 weeks (12 weeks, 15/18 or [82.6%] vs 24 weeks, 75/78 or [96.1%]). Patients treated with daclatasvir,
sofosbuvir, and RBV had high response rates in the 12-week and the 24-week treatment groups (100% and 97.1%, respectively), but only 4 patients were treated for 12 weeks. In the United Kingdom cohort, 235 HCV genotype 1-infected patients with decompensated cirrhosis (45% had prior IFN-based HCV treatment failures) were treated with 12 weeks of sofosbuvir plus ledipasvir or daclatasvir with or without RBV as part of a compassionate access program. The selection of daclatasvir or ledipasvir and the use of RBV was at the discretion of the treating physician; most patients (94.4%) had RBV in their regimen. Among patients treated with sofosbuvir plus RBV for 12 weeks, the SVR rate was 86% for those who received ledipasvir (n=164) and 82% for those who received daclatasvir (n=82). Based on these limited data, consideration should be given to the addition of RBV when treating more difficult-to-treat patients, such as those with cirrhosis.

Ledipasvir/sofosbuvir has been evaluated in patients with and without cirrhosis in whom prior treatment with PEG-IFN and RBV, with or without HCV protease inhibitors (telaprevir or boceprevir), failed. In the ION-2 study, patients who had not responded to prior PEG-IFN and RBV were treated with ledipasvir/sofosbuvir. This regimen was given for 12 weeks or 24 weeks, with or without RBV. In the population without cirrhosis, the overall response rate was 98% (95% confidence interval [CI], 96%-99%). Specifically, in patients without cirrhosis who did not respond to PEG-IFN and RBV, 33 of 35 (94%) achieved an SVR after treatment with ledipasvir/sofosbuvir alone, and 38 of 38 (100%) patients achieved SVR after treatment with ledipasvir/sofosbuvir and RBV. (Afdhal, 2014b) This regimen was well tolerated in all groups, with no serious adverse events reported in the 12-week regimen with or without RBV. In the population with cirrhosis, patients treated for 24 weeks had higher SVR rates than those treated for 12 weeks, supporting the recommendation that HCV treatment-experienced patients with cirrhosis receive 24 weeks of treatment without RBV.

In SIRIUS, a double-blind placebo-controlled French study, patients with cirrhosis who did not respond to PEG-IFN and RBV plus telaprevir or boceprevir, were randomized to receive placebo for 12 weeks followed by ledipasvir/sofosbuvir plus RBV for 12 weeks or ledipasvir/sofosbuvir plus placebo for 24 weeks. The SVR rate was similar in each group, 74 of 77 (96%) in the group that received ledipasvir/sofosbuvir plus RBV for 12 weeks (3 patients with relapse) and 75 of 77 (97%) in the group that received ledipasvir/sofosbuvir for 24 weeks (2 patients with relapse). This observation was further supported by a meta-analysis of treatment-naive and -experienced patients with cirrhosis who were treated with ledipasvir/sofosbuvir in phase II and III studies (including the SIRIUS study). In this analysis, ledipasvir/sofosbuvir for 12 weeks was inferior to ledipasvir/sofosbuvir for 24 weeks and ledipasvir/sofosbuvir plus RBV for 12 weeks; no difference in SVR was detected between the latter 2 groups. Safety and tolerability were similar in each group, and with the exception of anemia, reported adverse events did not differ substantially between patients treated with or without RBV. (Bourliere, 2014a; Bourliere, 2014b)

The daily fixed-dose combination of paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (PrOD) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 mg]) has been investigated for treatment of patients with HCV genotype 1 infection, in whom previous PEG-IFN and RBV therapy failed. (Zeuzem, 2014) In this phase III trial, patients who did not have cirrhosis who were treated for a total of 12 weeks had a high overall rate of response with 286 of 297 (96.3%) patients achieving SVR12. Response rates did not differ substantially when stratified by genotype subtype (genotype 1a, 96.0% [166/173]; genotype 1b, 96.7% [119/123]) or kinetics of prior response to PEG-IFN and RBV (relapse, 95.3% [82/86]; partial response, 100% [139/146]; null response, 95.2% [139/146]). In the PEARL-II study, 179 patients without cirrhosis and HCV genotype 1b infection, in whom previous therapy with PEG-IFN and RBV failed, were treated with PrOD with or without weight-
based RBV for 12 weeks. (Andreone, 2014 [16]) SVR rates were high in both arms: 100% (91/91) in the RBV-free arm and 96.6% (85/88) in the RBV-containing arm, supporting the recommendation that this regimen may be used without RBV for patients with HCV genotype 1b infection.

In the TURQUOISE-II study, patients with CTP class A cirrhosis were treated with PrOD and RBV for 12 weeks or 24 weeks. (Poordad, 2014 [17]) Of the 380 patients enrolled in this study, 220 had received prior PEG-IFN and RBV therapy that failed. Among the treatment-experienced patients, SVR12 was achieved in 90.2% (110/122) of patients in the 12-week arm and 96.9% (95/98) of patients in the 24-week arm. In multivariate logistic regression analysis, both prior null response to PEG-IFN and RBV therapy and genotype 1a subtype were associated with lower likelihood of SVR in patients who received 12 weeks of therapy. Therefore patients with HCV genotype 1a infection should be treated for 24 weeks. Hemoglobin decline to less than 10 g/dL occurred in 7.2% of the 12-week arm and 11.0% of the 24-week arm; however, treatment discontinuation for adverse events was rare overall (2.1%). To address the need for RBV with this regimen in patients with HCV genotype 1b and cirrhosis, the TURQUOISE-III study evaluated the safety and efficacy of PrOD without RBV for 12 weeks in patients with HCV genotype 1b infection and compensated cirrhosis. Sixty patients (62% men, 55% treatment experienced, 83% with the IL28B non-CC genotype, 22% with platelet counts <90 x 109/L, and 17% with albumin levels <3.5 g/dL) were enrolled. All patients completed treatment, and all patients achieved an SVR12. On the basis of this study, treating patients with HCV genotype 1b with PrOD but without RBV is recommended, regardless of prior treatment experience or presence of cirrhosis. (Feld, 2015 [18])

In October 2015, the US Food and Drug Administration (FDA) released a warning [19] regarding the use of the PrOD or PrO (without dasabuvir) in patients with cirrhosis. (This statement is based on our review of the limited data available from the FDA and will be updated if and when more data become available.) PrOD and PrO are contraindicated in patients with Child Turcotte Pugh (CTP) class B or C hepatic impairment (decompensated liver disease). The manufacturer’s pharmacovigilance program reported rapid onset of liver injury and in some cases hepatic decompensation in patients with cirrhosis, including CTP class A compensated cirrhosis and decompensated cirrhosis, who were receiving PrOD or PrO. The liver injury and decompensating events occurred largely during the first 4 weeks of therapy and primarily involved a rapid increase in total and direct bilirubin, often associated with a concomitant increase in liver enzyme levels. In most cases, early recognition and prompt discontinuation of PrOD or PrO resulted in resolution of injury, although some patients, including at least 2 patients with CTP class A compensated cirrhosis, died or required liver transplantation. Although cirrhosis carries a 2% to 4% annual risk of hepatic decompensation, the rapid onset of hepatic decompensation and in many cases its resolution with discontinuation of treatment with PrOD or PrO is suggestive of drug-induced liver injury. Although PrOD and PrO are contraindicated in patients with CTP class B or C cirrhosis and decompensated liver disease, predictors of these events in patients with CTP class A cirrhosis are currently unclear.

For patients with CTP class A cirrhosis, the unlikely but real possibility of drug-induced liver injury should be discussed with the patient. If the decision is made to initiate treatment with PrOD or PrO, close monitoring of total and direct bilirubin and transaminase levels every 1 week or 2 weeks for the first 4 weeks is recommended to ensure early detection of drug-induced liver injury. Also, educating patients about the importance of reporting systemic symptoms such as jaundice, weakness, and fatigue is strongly recommended. The regimen should be discontinued immediately if drug-induced liver injury is detected. If a patient is already taking PrOD or PrO and is tolerating the regimen, laboratory monitoring as above without discontinuation is recommended unless there are signs or symptoms of liver injury. If heightened monitoring cannot be provided in the first 4 weeks of therapy with PrOD or PrO in patients
To address the need for RBV with this regimen in patients with HCV genotype 1b and cirrhosis, the TURQUOISE-III study evaluated the safety and efficacy of PrOD without RBV for 12 weeks in patients with HCV genotype 1b infection and compensated cirrhosis. Sixty patients (62% men, 55% treatment experienced, 83% with the IL28B non-CC genotype, 22% with platelet counts <90 x 10^9/L, and 17% with albumin levels <3.5 g/dL) were enrolled. All patients completed treatment, and all patients achieved an SVR12. On the basis of this study, treating patients with HCV genotype 1b with PrOD but without RBV is recommended, regardless of prior treatment experience or presence of cirrhosis. (Feld, 2015)

In the phase IIa COSMOS study, participants received simeprevir (150 mg once daily) plus sofosbuvir (400 mg once daily) with or without weight-based RBV for 12 weeks or 24 weeks. (Lawitz, 2014b) The OPTIMIST-1 and -2 studies subsequently evaluated the combination of sofosbuvir plus simeprevir for 12 weeks in patients with HCV genotype 1 infection who were HCV treatment-naive and -experienced. (Lawitz, 2015; Kwo, 2015) In OPTIMIST-1, patients with HCV genotype 1 infection and no evidence of cirrhosis were randomized to 8 weeks or 12 weeks of treatment. Overall, 8 weeks (SVR 83%) was less effective than 12 weeks (SVR 97%) of treatment. Among those treated for 12 weeks, the SVR rate in PEG-IFN plus RBV treatment-experienced patients was 95% (38 of 40) and the SVR rate in patients with genotype 1a infection with the Q80K polymorphism (96%; 44 of 46) was similar to that observed in patients without the Q80K variant (97%; 69 of 70). In contrast, in the OPTIMIST-2 study, 79% (42 of 53) of treatment-experienced patients with HCV genotype 1 infection and cirrhosis who were treated with 12 weeks of simeprevir and sofosbuvir achieved SVR. Overall, in this population of patients with cirrhosis, the SVR rate was lower in patients with HCV genotype 1a with the Q80K variant (74%; 25 of 34) than in patients with HCV genotype 1a without the Q80K variant (92%, 35 of 38). Taken together, these studies support the evaluation of treatment-experienced patients with cirrhosis and HCV genotype 1a for the presence of the Q80K polymorphism. If the Q80K polymorphism is detected, alternative treatment regimens should be used. (Janssen Therapeutics, 2013; Lawitz, 2014b)

Recommended regimens for patients in whom a previous sofosbuvir plus RBV with or without PEG-IFN treatment has failed.

No Cirrhosis

Daily fixed-dose combination of ledipivir (90 mg)/sofosbuvir (400 mg) with weight-based RBV for 12 weeks is recommended for patients without cirrhosis, in whom a previous sofosbuvir plus RBV-containing regimen with or without PEG-IFN has failed.

Rating: Class IIb, Level C

Cirrhosis

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with weight-based RBV for 24 weeks is recommended for patients with cirrhosis, in whom a previous sofosbuvir-containing regimen has failed.

Rating: Class IIa, Level C
To date, clinical experience and trial data on the retreatment of such patients are very limited. However, retreatment after a sofosbuvir-containing treatment failure with a second course of treatment using sofosbuvir plus new agents, or retreatment with the same sofosbuvir-based regimen has been reported.

Retreatment with ledipasvir/sofosbuvir in subjects with HCV genotype 1 infection, with or without cirrhosis, in whom a sofosbuvir-containing regimen failed has been evaluated in 2 small pilot studies utilizing ledipasvir/sofosbuvir for 12 weeks. With prior failures of 24 weeks of sofosbuvir plus RBV, high SVR rates were noted when patients were retreated with ledipasvir/sofosbuvir for 12 weeks. (Osinusi, 2014a [24]) Ledipasvir/sofosbuvir plus RBV has also been evaluated in subjects in whom prior treatment with sofosbuvir plus PEG-IFN and RBV or sofosbuvir and RBV failed. In this study of 51 patients, retreatment with ledipasvir/sofosbuvir plus RBV for 12 weeks led to SVR12 in 100% of 50 patients with HCV genotype 1 infection; 1 virologic failure was observed in a patient determined to have HCV genotype 3 infection prior to retreatment. (Wyles, 2015b [25]) There are exceedingly limited data on the retreatment of such patients with cirrhosis. However, a post hoc analysis of 352 previously treated patients with cirrhosis (240 of whom had prior protease inhibitor-based treatment failures) who were retreated with 12 weeks or 24 weeks of ledipasvir/sofosbuvir with or without RBV found that SVR12 was achieved in 95% to 98%. (Reddy, 2015 [26]) Thus, for previously treated HCV genotype 1–infected patients with compensated cirrhosis, retreatment with 24 weeks of ledipasvir/sofosbuvir plus RBV is recommended.

Recommended regimen for patients without cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom prior treatment with an HCV nonstructural protein 3 (NS3) protease inhibitor (telaprevir, boceprevir, or simeprevir) plus PEG-IFN and RBV or simeprevir plus sofosbuvir has failed (no prior NS5A treatment).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1 infection, regardless of subtype, who do not have cirrhosis, in whom prior treatment with an HCV protease inhibitor plus PEG-IFN, and RBV has failed.

Rating: Class I, Level A

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for retreatment of patients with HCV genotype 1 infection, regardless of subtype, who do not have cirrhosis, in whom prior treatment with an HCV protease inhibitor, plus PEG-IFN and RBV has failed. Based on limited data, the addition of weight-based RBV to ledipasvir/sofosbuvir is recommended for patients without cirrhosis, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed.

Rating: Class I, Level A
Three regimens with similar efficacy are recommended for patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom prior treatment with an HCV nonstructural protein 3 (NS3) protease inhibitor (telaprevir, boceprevir, or simeprevir) plus PEG-IFN and RBV or simeprevir plus sofosbuvir has failed (no prior NS5A treatment).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 1a or 1b infection with compensated cirrhosis, in whom prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed.

Rating: Class IIa, Level B

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for retreatment of patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom a prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed. Based on limited data, the addition of weight-based RBV to ledipasvir/sofosbuvir is recommended for patients with cirrhosis, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed.

Rating: Class I, Level A

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) plus weight-based RBV for 12 weeks is recommended for patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom a prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed. Patients with cirrhosis who have HCV genotype 1 infection, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed should not be treated with this 12-week regimen.

Rating: Class IIa, Level B

The combination of daclatasvir and sofosbuvir was studied in 41 patients without cirrhosis in whom previous therapy with PEG-IFN, RBV, and an HCV protease inhibitor had failed. Of these patients, 21 were treated with daclatasvir and sofosbuvir for 24 weeks and 20 were treated with daclatasvir and sofosbuvir plus RBV for 24 weeks. Both groups had high cure rates and no additional benefit was seen with the inclusion of RBV (98% SVR12 overall). (Sulkowski, 2014b [27]) Although data are limited, the addition of RBV can be considered in difficult-to-treat situations, such as in patients with cirrhosis. (Pol, 2015 [28])
The safety and efficacy of ledipasvir/sofosbuvir was evaluated in subjects in whom prior treatment with an HCV protease inhibitor (telaprevir or boceprevir) plus PEG-IFN and RBV has failed. (Afdhal, 2014b [12]) SVR12 rates with 12- and 24-week regimens were high during both treatment durations (94% and 98%, respectively). Relapse rates in the ION-2 retreatment trial were numerically higher in the 12-week arms than in the 24-week arms. The pretreatment presence of cirrhosis or nonstructural protein 5A (NS5A) resistance–associated variants (RAV) were the major reasons for the higher relapse rate in the 12-week arm. Thus, patients with cirrhosis in whom a prior regimen of PEG-IFN, RBV, and an HCV protease inhibitor has failed should receive 24 weeks of ledipasvir/sofosbuvir, and patients without cirrhosis should receive 12 weeks of ledipasvir/sofosbuvir. Based on data from the SIRIUS study, patients with cirrhosis in whom a prior protease inhibitor–containing regimen failed may also receive ledipasvir/sofosbuvir plus weight-based RBV for 12 weeks.

Emerging data suggest that approximately 10% to 15% of patients with HCV genotype 1 infection treated for 12 weeks with simeprevir plus sofosbuvir will experience treatment failure, typically due to viral relapse after discontinuing therapy. Treatment failure appears to be more common in persons infected with HCV genotype 1a and those with cirrhosis. Data from the COSMOS study indicate that treatment failure following a regimen of simeprevir plus sofosbuvir is associated with resistance to simeprevir and cross-resistance to other HCV NS3 and NS4A protease inhibitors such as paritaprevir, telaprevir, and boceprevir. On the other hand, sofosbuvir RAVs were not observed in the COSMOS trial and are likely to be rare in clinical practice.

The following regimens are NOT recommended for patients with HCV genotype 1 infection in whom prior treatment that included an HCV protease inhibitor has failed.

- Any regimen containing PEG-IFN, including
 - Simeprevir, PEG-IFN, and RBV
 - Sofosbuvir, PEG-IFN, and RBV
 - Telaprevir or boceprevir, PEG-IFN, and RBV
 - PEG-IFN and RBV alone
 Rating: Class IIb Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A
- Any IFN-free regimen containing an HCV protease inhibitor
 - Simeprevir
 - Paritaprevir
 Rating: Class IIb, Level A

In the phase IIb ASPIRE trial, simeprevir was combined with PEG-IFN and RBV to treat patients in whom previous PEG-IFN and RBV failed. (Zeuzem, 2013a [29]); (Janssen Therapeutics, 2013 [23]); (www.fda.gov [30]; package insert [31]) The SVR24 rate after 48 total weeks of therapy in the simeprevir 150 mg per day arm was 65% in patients with a previous partial response (n=23) and 53% in patients with a prior null response (n=17). Based on a relatively poor response to treatment, a need for prolonged therapy, and poor tolerability, this treatment is no longer recommended.
Sofosbuvir combined with PEG-IFN and RBV has high efficacy in treatment-naive patients but has not been studied prospectively in the treatment-experienced population. Based on limited prospective data and poor tolerability to PEG-IFN-based regimens, this treatment is no longer recommended.

Triple therapy with boceprevir plus PEG-IFN and RBV for 48 weeks may result in SVR for up to 52% of patients who had a partial response to previous PEG-IFN and RBV treatment (RESPOND 2), \(^{[32]}\) and up to 38% of patients with a prior null response (PROVIDE). \(^{[33]}\) Similarly, telaprevir plus PEG-IFN and RBV resulted in an SVR24 rate of 54% to 59% among patients who had a partial response to previous treatment and an SVR24 rate of 29% to 33% among those who had a prior null response (REALIZE). \(^{[34]}\) Because of relatively poor efficacy, need for prolonged therapy (48 weeks), and poor tolerability, these regimens are no longer recommended.

Monotherapy with PEG-IFN, RBV, or any of the available DAAs is ineffective; further, DAA monotherapy leads to rapid selection of resistant variants.

Recommended regimen for patients in whom previous treatment with any HCV nonstructural protein 5A (NS5A) inhibitors has failed (including daclatasvir plus sofosbuvir, ledipasvir/sofosbuvir, or paritaprevir/ritonavir/ombitasvir plus dasabuvir).

For patients with minimal liver disease, deferral of treatment is recommended, pending availability of data.

Rating: Class IIb, Level C

For patients with cirrhosis or other patients who require retreatment urgently, testing for resistance-associated variants that confer decreased susceptibility to NS3 protease inhibitors and to NS5A inhibitors is recommended. The specific drugs used in the retreatment regimen should be tailored to the results of this testing as described below. Treatment duration of 24 weeks is recommended and, unless contraindicated, weight-based RBV should be added.

Rating: Class IIb, Level C

For patients with cirrhosis or other patients who require retreatment urgently, testing for RAVs that confer decreased susceptibility to NS3 protease inhibitors (eg, Q80K) and to NS5A inhibitors should be performed using commercially available assays prior to selecting the next HCV treatment regimen. For patients with no NS5A inhibitor RAVs detected, retreatment with ledipasvir/sofosbuvir and RBV for 24 weeks is recommended. For patients who have NS5A inhibitor RAVs detected and who do not have NS3 inhibitor RAVs detected, treatment with simeprevir, sofosbuvir, and RBV for 24 weeks is recommended. For patients who have both NS3 and NS5A inhibitor RAVs detected, retreatment should be conducted in a clinical trial setting, as an appropriate treatment regimen cannot be recommended at this time.

No data are yet available on the retreatment of patients for whom prior treatment with PrOD has failed.
However, studies that have evaluated patients whose virus did not respond to PrOD have reported the presence of RAVs that confer decreased susceptibility to NS3 protease inhibitors (eg, paritaprevir), NS5A inhibitors (eg, daclatasvir, ledipasvir, ombitasvir), and nonnucleoside polymerase inhibitors (eg, dasabuvir). Based on these observations, patients for whom treatment with PrOD did not result in an SVR should have HCV treatment deferred in the setting of mild liver disease, and for those with advanced fibrosis, testing for RAVs should be performed.

Data on the retreatment of patients for whom prior treatment with ledipasvir/sofosbuvir has failed are very limited. In a pilot study, 41 patients with and without cirrhosis who did not achieve an SVR with 8 weeks or 12 weeks of ledipasvir/sofosbuvir were retreated with 24 weeks of ledipasvir/sofosbuvir. SVR12 rates varied according to the presence or absence of NS5A inhibitor RAVs. Among 11 patients for whom NS5A inhibitor RAVs were not detected, SVR occurred in 11 of 11 (100%); in contrast, among 30 patients for whom NS5A inhibitor RAVs were detected, SVR occurred in 18 of 30 (60%). Importantly, NS5B inhibitor RAVs (eg, S282T) known to confer decreased activity of sofosbuvir were observed in 3 of 12 (25%) patients for whom the retreatment regimen was not successful. Similarly, in the OPTIMIST-2 study in which patients with cirrhosis were treated with simeprevir and sofosbuvir, the presence of NS3 RAVs, namely the Q80K polymorphism, led to a decreased SVR rate in patients with HCV genotype 1a infection. SVR occurred in 25 of 34 (74%) patients with HCV genotype 1a and the Q80K RAV and in 35 of 38 (92%) patients with HCV genotype 1a without the Q80K RAV. Based on these data, retreatment for patients for whom an NS5A inhibitor-containing regimen has failed should be considered in the context of retreatment urgency and the presence or absence of RAVs to inhibitors of NS3 and NS5A. Further, based on limited data, RBV is recommended as part of all retreatment regimens for patients in whom prior treatment with NS5A inhibitors has failed. Although no data exist, consideration may also be given to the addition of PEG-IFN to the retreatment regimen in patients who are eligible for this agent; PEG-IFN will have antiviral activity regardless of the RAVs present.

II. Genotype 2

Recommended regimen for patients with HCV genotype 2 infection in whom prior PEG-IFN and RBV treatment has failed.

Daily sofosbuvir (400 mg) and weight-based RBV for 16 weeks or 24 weeks is recommended for patients with HCV genotype 2 infection, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

High SVR12 rates were demonstrated in patients with HCV genotype 2 infection in whom prior treatment with PEG-IFN and RBV had failed who were retreated with 12 weeks of sofosbuvir plus RBV. Limited data are available for treatment-experienced patients with HCV genotype 2 infection and cirrhosis; however, in the FUSION study, numerically higher SVR12 rates were seen with extension of therapy from 12 weeks (60%) to 16 weeks (78%). (Jacobson, 2013b [35]) In contrast, the VALENCE trial found high SVR12 rates among HCV genotype 2–infected persons with cirrhosis after only 12 weeks of sofosbuvir plus RBV (88%). (Zeuzem, 2013b [36]) Further, in the BOSON study, 48 patients with HCV genotype 2 infection who did not respond to prior treatment with PEG-IFN plus RBV were treated with sofosbuvir plus RBV for 16 weeks...
SVR was achieved in 13 of 15 (87%) and 17 of 17 (100%) patients treated with sofosbuvir plus RBV for 16 weeks and 24 weeks, respectively. Among those who received sofosbuvir, PEG-IFN, and RBV for 12 weeks, SVR occurred in 15 of 16 (94%). Thus, definitive recommendations on the appropriate duration of sofosbuvir and RBV for treatment-experienced, HCV genotype 2–infected persons with cirrhosis cannot be made at this time. The decision to extend therapy with sofosbuvir plus RBV to 16 weeks or 24 weeks or to add PEG-IFN for 12 weeks should be made on an individual patient basis.

Alternative regimen for patients with HCV genotype 2 infection who are eligible to receive IFN, and in whom prior PEG-IFN and RBV treatment has failed.

Retreatment with daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative for patients with HCV genotype 2 infection who are are eligible to receive PEG-IFN, in whom previous PEG-IFN and RBV treatment failed.

Rating: Class IIa, Level B

In recognition of the potential limitations of sofosbuvir plus RBV in harder-to-treat, HCV genotype 2–infected patients in whom a prior treatment had failed, particularly those with cirrhosis, treatment that included PEG-IFN has been studied. The LONESTAR-2 trial (an open-label, single-site, single-arm, phase II trial) evaluated PEG-IFN (180 μg weekly), sofosbuvir (400 mg daily), and weight-based RBV (daily in 2 divided doses for 12 weeks) in treatment-experienced patients with HCV genotype 2 or 3. (Lawitz, 2014a [37]) Cirrhosis was present at baseline in 61% of patients. SVR12 was achieved in 22 of 23 (96%) persons with HCV genotype 2 infection. For patients with and without cirrhosis, SVR occurred in 13 of 14 patients (93%) and 9 of 9 patients (100%), respectively. Despite the limitations of the data from this small study and accounting for the potential challenges inherent with IFN-based therapy, sofosbuvir plus PEG-IFN and RBV is an alternative 12-week regimen for HCV genotype 2–infected patients with cirrhosis.

Recommended regimens for patients with HCV genotype 2 infection in whom prior sofosbuvir and RBV treatment has failed.

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 2 infection who are not eligible to receive IFN, in whom previous treatment with sofosbuvir and RBV has failed.

Rating: Class IIa, Level C

Retreatment with daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for patients who have HCV genotype 2 infection, who are eligible to receive IFN, and in whom previous treatment with sofosbuvir and RBV has failed.
To date, there are little data available to guide therapy in patients with HCV genotype 2 infection in whom prior treatment with sofosbuvir and RBV has failed. In the BOSON study, patients who had prior treatment with PEG-IFN and RBV had high response rates (SVR12 in 15 of 16 patients) when retreated with sofosbuvir, PEG-IFN, and RBV for 12 weeks. Although patients who were previously treated with sofosbuvir plus RBV were not specifically studied, retreatment with the addition of PEG-IFN will likely improve response rates and may be considered in an IFN-eligible patient in need of more-immediate therapy.

The combination of daclatasvir and sofosbuvir is effective in patients with HCV genotype 2 infection, but there are limited data about this therapy in treatment-experienced patients with HCV genotype 2 infection. (Sulkowski, 2014b [27]; Wyles, 2015 [38]) For patients in whom prior treatment with sofosbuvir and RBV failed who are IFN ineligible, the decision to treat with daclatasvir and sofosbuvir should be made on an individual patient basis with consideration of extension of therapy to 24 weeks with the addition of RBV, especially in difficult-to-treat patients such as those with cirrhosis.

The following regimens are NOT recommended for patients with HCV genotype 2 infection in whom prior HCV therapy with PEG-IFN and RBV has failed.

- PEG-IFN and RBV with or without telaprevir or boceprevir. **Rating:** Class IIb, Level A
- Ledipasvir/sofosbuvir. **Rating:** Class III, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A

No HCV protease inhibitors have been approved by the FDA or are indicated for the treatment of HCV genotype 2 infection. However, there is in vitro and in vivo evidence that simeprevir has activity against HCV genotype 2. Although PEG-IFN plus RBV has been the mainstay of treatment for HCV genotype 2, it requires a longer duration of therapy, is less efficacious, and has more adverse effects than the recommended regimens.

III. Genotype 3

Recommended regimens for patients with HCV genotype 3 infection without cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 3 infection without cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class I, Level A
Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class I Level A

Recommended regimens for patients with HCV genotype 3 infection with cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks with weight-based RBV is recommended for patients with cirrhosis and HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed and who are IFN ineligible.

Rating: Class IIa, Level C

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed and who are IFN eligible.

Rating: Class I, Level A

In the LONESTAR-2 study, adding 12 weeks of PEG-IFN to the sofosbuvir and RBV regimen resulted in a numerically higher response rate among persons with HCV genotype 3 infection than that achieved with sofosbuvir and RBV alone for 24 weeks. Of HCV genotype 3-infected patients with and without cirrhosis, 10 of 12 (83%) achieved an SVR. These preliminary findings were confirmed in the BOSON study in which patients with HCV genotype 3 infection were randomly assigned to receive treatment with 1 of 3 regimens: sofosbuvir and RBV for 16 weeks; sofosbuvir and RBV for 24 weeks; or PEG-IFN (alfa-2a 180 mcg SC weekly), sofosbuvir, and RBV for 12 weeks. Among patients with HCV genotype 3 infection, SVR12 was achieved in 168 of 181 patients (92.8%) treated with 12 weeks of PEG-IFN, sofosbuvir, and RBV and 153 of 182 patients (84.1%) treated with 24 weeks of sofosbuvir and RBV; only 128 of 181 patients (70.7%) treated with 16 weeks of sofosbuvir and RBV achieved an SVR12. Treatment with PEG-IFN, sofosbuvir, and RBV for 12 weeks led to a higher SVR rate than sofosbuvir and RBV in treatment-experienced patients with HCV genotype 3 infection with (85.7% and 76.5%, respectively) and without cirrhosis (94.2% and 81.5%, respectively). No difference was observed with respect to safety and tolerability of the studied regimens. Accordingly, data from these randomized controlled trials strongly support the addition of PEG-IFN to sofosbuvir and RBV in all treatment-experienced patients with HCV genotype 3 infection, including those without cirrhosis when compared with sofosbuvir and RBV alone.

Although data are very limited for treatment-experienced HCV genotype 3–infected patients with cirrhosis, especially those who are ineligible for IFN, treatment with daclatasvir and sofosbuvir plus RBV for 24 weeks is recommended; however, omission of RBV can be considered for patients in whom RBV-containing therapy is contraindicated.
Recommended regimens for patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks with weight-based RBV is recommended for IFN-ineligible patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

Rating: Class IIa Level C

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

Rating: Class IIa Level C

In the ALLY-3 study, 7 patients previously treated with sofosbuvir-containing regimens were retreated with daclatasvir and sofosbuvir for 12 weeks. Of these patients, 5 (71%) achieved an SVR12. (Nelson, 2015 [39]) Based on these limited data, 12 weeks of daclatasvir and sofosbuvir may be insufficient, and extending the duration to 24 weeks of therapy and adding weight-based RBV is recommended.

The following regimens are NOT recommended for patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed.

- **PEG-IFN and RBV for 24 weeks to 48 weeks. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir-, boceprevir-, or simeprevir-based regimens. Rating:** Class III, Level A

No HCV protease inhibitors have been FDA approved or are indicated for the treatment of HCV genotype 3 infection. Although PEG-IFN plus RBV has been the mainstay of treatment of HCV genotype 3 infection, it is less efficacious and has more adverse effects than the recommended regimens.

IV. Genotype 4

Data to guide decision making in patients infected with HCV genotype 4 infection are limited. Nonetheless, for patients in whom retreatment is required, the following recommendations can be made.

Several options with similar efficacy in general are recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV
has failed (listed in alphabetic order; see text).

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) (PrO) and weight-based RBV for 12 weeks is recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class IIa, Level B

Daily sofosbuvir (400 mg) for 12 weeks and daily weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for retreatment of IFN-eligible patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class IIa, Level B

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for retreatment of patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class IIa, Level B

PEARL-I was an open-label phase IIb study that included a cohort of 49 treatment-experienced patients with HCV genotype 4 infection without cirrhosis who received 12 weeks of paritaprevir, ritonavir, and ombitasvir (PrO) with or without weight-based RBV. In intention-to-treat analysis, SVR12 was achieved in 41 of 41 (100%) patients. This regimen was well tolerated with no serious adverse events reported. ([Hezode, 2015](#40))

Sofosbuvir-based regimens have also shown efficacy in patients infected with HCV genotype 4. Sofosbuvir administered with PEG-IFN and RBV for 12 weeks was investigated in the phase III NEUTRINO trial. ([Lawitz, 2013a](#41)) Of the 28 treatment-naive patients with HCV genotype 4 infection, 27 (96%) achieved SVR12. In a pilot study of treatment-experienced patients of Egyptian ancestry with HCV genotype 4 infection, patients were randomly assigned to receive sofosbuvir and RBV for 12 weeks or 24 weeks. SVR12 rate was numerically higher in the 24-week arm (89% [24/27] in the 24-week arm vs 70% [19/27] in the 12-week arm), supporting the recommendation for longer treatment duration with a sofosbuvir and RBV regimen. ([Esmat, 2014](#42)) In the SYNERGY trial, 20 patients with HCV genotype 4 infection were treated with ledipasvir/sofosbuvir for 12 weeks. Of these patients, 40% were treatment experienced and 40% had advanced fibrosis. Preliminary data demonstrate efficacy, with 95% achieving SVR12 based on an intention-to-treat analysis. ([Kapoor, 2014](#43))
The following regimens are NOT recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

- PEG-IFN and RBV with or without telaprevir or boceprevir. Rating: Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A

PEG-IFN and RBV for 48 weeks was previously recommended for patients with HCV genotype 4 infection. (AASLD/IDSA/IAS-USA, 2014 [44]) Adding sofosbuvir (400 mg daily) to PEG-IFN and RBV increases SVR rates and markedly shortens therapy with no apparent additional adverse effects. The addition of simeprevir to PEG-IFN and RBV increases response rates but has inferior SVR rates compared with SVR rates of other available regimens and requires a longer duration of PEG-IFN and RBV therapy, which increases the risk of adverse events. Therefore, this treatment is no longer recommended. (Moreno, 2013b [45])

Because of their limited activity against HCV genotype 4 in vitro and in vivo, neither boceprevir nor telaprevir should not be used to treat patients with HCV genotype 4 infection.

V. Genotype 5 and 6

Few data are available to help guide decision making for patients infected with HCV genotype 5 or 6. Thus, for those patients for whom immediate treatment is required, the following recommendations have been drawn from available data.

Recommended regimen for patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 5 or 6 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class IIa, Level C

Alternative regimen for IFN-eligible patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative regimen for IFN-eligible patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Rating: Class IIa, Level C
In the phase III NEUTRINO trial, (Lawitz, 2013a [41]) treatment-naive patients with HCV genotypes 1 (n=291), 4 (n=28), 5 (n=1), and 6 (n=6) were treated with sofosbuvir (400 mg daily) plus PEG-IFN (2a 180 µg weekly) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) for 12 weeks. All 6 patients with HCV genotype 6 and the 1 patient with HCV genotype 5 achieved SVR12. The adverse event profile in these patients and in the larger study population was similar to that seen with PEG-IFN and RBV therapy.

Ledipasvir has in vitro activity against most HCV genotype 6 subtypes (exception 6e). (Wong, 2013 [46]); (Kohler, 2014 [47]) A small, 2-center, open-label study (NCT01826981) investigated the safety and in vivo efficacy of ledipasvir/sofosbuvir for 12 weeks in treatment-naive and -experienced patients with HCV genotype 6 infection. Twenty-five patients (92% treatment naive) who were primarily of Asian descent (88%) were infected with different subtypes of HCV genotype 6 (32%, 6a; 24%, 6e; 12%, 6l; 8%, 6m; 12%, 6p; 8%, 6q; 4%, 6r). Two patients (8%) had cirrhosis. The SVR12 rate was 96% (24/25). The 1 patient who experienced relapse had discontinued therapy at week 8 because of drug use. No patient discontinued treatment owing to adverse events.

The following regimens are NOT recommended for patients with HCV genotype 5 or 6 infection in whom prior treatment has failed.

- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A
- Telaprevir- or boceprevir-based regimens. Rating: Class III, Level A

Because of their limited activity against HCV genotypes 5 and 6 in vitro and in vivo, neither boceprevir nor telaprevir should not be used as therapy for patients with HCV genotype 5 or 6 infection.

Mixed Genotypes

Rarely, genotyping assays may indicate the presence of a mixed infection (eg, genotypes 1a and 2). Treatment data for mixed genotypes with DAAs are sparse, and awaiting the availability of a pangenotypic regimen may be considered. Until then, when treatment is necessary, the choice of antiviral combination and duration of treatment should maximize efficacy against each genotype represented in the assay. When the correct combination or duration is unclear, expert consultation should be sought.

Changes made on December 11, 2015.
Retreatment Box. Summary of Recommendations for Patients in Whom Previous Treatment Has Failed

Several options with similar efficacy in general are recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed (listed in alphabetic order; see text).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class Ila, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dasabuvir (250 mg) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [>75 kg]) for 12 weeks is recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks is
recommended for patients with HCV genotype 1a infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B

Several options with similar efficacy are recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed (listed in alphabetic order; see text).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1b infection who do not have cirrhosis, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B

Recommended regimens for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis [1], *in whom prior PEG-IFN and RBV treatment has failed.*

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis [1], in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class IIa, Level B
Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis \cite{1}, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) plus weight-based RBV for 12 weeks is recommended for patients with HCV genotype 1a or 1b infection who have compensated cirrhosis \cite{1}, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level B

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 24 weeks is recommended for patients with HCV genotype 1a infection and for 12 weeks without RBV for patients with HCV genotype 1b infection who have compensated cirrhosis \cite{1}, in whom prior PEG-IFN and RBV treatment has failed.

Rating: Class I, Level A

Daily simeprevir (150 mg) plus sofosbuvir (400 mg) with or without weight-based RBV for 24 weeks is recommended for patients with HCV genotype 1a infection who are negative for the Q80K variant by commercially available resistance assays and for patients with HCV genotype 1b infection, in whom prior PEG-IFN and RBV treatment has failed. Alternative regimens should be used for patients with compensated cirrhosis \cite{1} and HCV genotype 1a infection in whom the Q80K variant is present.

Rating: Class IIa, Level B

Recommended regimens for patients in whom a previous sofosbuvir plus RBV with or without PEG-IFN treatment has failed.

No Cirrhosis

Daily fixed-dose combination of ledipavir (90 mg)/sofosbuvir (400 mg) with weight-based RBV for 12 weeks is recommended for patients without cirrhosis, in whom a previous sofosbuvir plus RBV-containing regimen with or without PEG-IFN has failed.

Rating: Class IIb, Level C
Cirrhosis

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with weight-based RBV for 24 weeks is recommended for patients with cirrhosis, in whom a previous sofosbuvir-containing regimen has failed.

Rating: Class IIa, Level C

Recommended regimen for patients without cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom prior treatment with an HCV nonstructural protein 3 (NS3) protease inhibitor (telaprevir, boceprevir, or simeprevir) plus PEG-IFN and RBV or simeprevir plus sofosbuvir has failed (no prior NS5A treatment).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 1 infection, regardless of subtype, who do not have cirrhosis, in whom prior treatment with an HCV protease inhibitor plus PEG-IFN, and RBV has failed.

Rating: Class I, Level A

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for retreatment of patients with HCV genotype 1 infection, regardless of subtype, who do not have cirrhosis, in whom prior treatment with an HCV protease inhibitor, plus PEG-IFN and RBV has failed. Based on limited data, the addition of weight-based RBV to ledipasvir/sofosbuvir is recommended for patients without cirrhosis, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed.

Rating: Class I, Level A

Three regimens with similar efficacy are recommended for patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom prior treatment with an HCV nonstructural protein 3 (NS3) protease inhibitor (telaprevir, boceprevir, or simeprevir) plus PEG-IFN and RBV or simeprevir plus sofosbuvir has failed (no prior NS5A treatment).

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 1a or 1b infection with *compensated cirrhosis,* [1] in whom prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed.

Rating: Class IIa, Level B
Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for retreatment of patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom a prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed. Based on limited data, the addition of weight-based RBV to ledipasvir/sofosbuvir is recommended for patients with cirrhosis, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed.

Rating: Class I, Level A

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) plus weight-based RBV for 12 weeks is recommended for patients with cirrhosis who have HCV genotype 1 infection, regardless of subtype, in whom a prior treatment with an HCV protease inhibitor plus PEG-IFN and RBV has failed. Patients with cirrhosis who have HCV genotype 1 infection, in whom prior treatment with the HCV protease inhibitor simeprevir plus sofosbuvir has failed should not be treated with this 12-week regimen.

Rating: Class IIa, Level B

The following regimens are NOT recommended for patients with HCV genotype 1 infection in whom prior treatment that included an HCV protease inhibitor has failed.

- Any regimen containing PEG-IFN, including
 - Simeprevir, PEG-IFN, and RBV
 - Sofosbuvir, PEG-IFN, and RBV
 - Telaprevir or boceprevir, PEG-IFN, and RBV
 - PEG-IFN and RBV alone

Rating: Class IIb, Level A

- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A

- Any IFN-free regimen containing an HCV protease inhibitor
 - Simeprevir
 - Paritaprevir

Rating: Class IIb, Level A

- **Recommended regimen for patients in whom previous treatment with any HCV nonstructural protein 5A (NS5A) inhibitors has failed** (including daclatasvir plus sofosbuvir, ledipasvir/sofosbuvir, or paritaprevir/ritonavir/ombitasvir plus dasabuvir).

For patients with minimal liver disease, deferral of treatment is recommended, pending availability of data.
For patients with cirrhosis or other patients who require retreatment urgently, testing for resistance-associated variants that confer decreased susceptibility to NS3 protease inhibitors and to NS5A inhibitors is recommended. The specific drugs used in the retreatment regimen should be tailored to the results of this testing as described below. Treatment duration of 24 weeks is recommended and, unless contraindicated, weight-based RBV should be added.

Recommended regimen for patients with HCV genotype 2 infection in whom prior PEG-IFN and RBV treatment has failed.

Daily sofosbuvir (400 mg) and weight-based RBV for 16 weeks or 24 weeks is recommended for patients with HCV genotype 2 infection, in whom prior PEG-IFN and RBV treatment has failed.

Alternative regimen for patients with HCV genotype 2 infection who are eligible to receive IFN, and in whom prior PEG-IFN and RBV treatment has failed.

Retreatment with daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative for patients with HCV genotype 2 infection who are eligible to receive PEG-IFN, in whom previous PEG-IFN and RBV treatment failed.

Recommended regimens for patients with HCV genotype 2 infection in whom prior sofosbuvir and RBV treatment has failed.

Daily daclatasvir (60 mg) plus sofosbuvir (400 mg) for 24 weeks with or without weight-based RBV is recommended for patients with HCV genotype 2 infection who are not eligible to receive IFN, in whom previous treatment with sofosbuvir and RBV has failed.

Retreatment with daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for patients who have HCV genotype 2 infection, who are eligible to receive IFN, and in whom previous treatment with sofosbuvir and RBV has failed.
The following regimens are **NOT** recommended for patients with HCV genotype 2 infection in whom prior HCV therapy with PEG-IFN and RBV has failed.

- **PEG-IFN and RBV with or without telaprevir or boceprevir. Rating:** Class IIb, Level A
- **Ledipasvir/sofosbuvir. Rating:** Class IIb, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class IIb, Level A

Recommended regimens for patients with HCV genotype 3 infection without cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 3 infection without cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class I, Level A

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class I Level A

Recommended regimens for patients with HCV genotype 3 infection with cirrhosis, in whom prior treatment with PEG-IFN and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks with weight based RBV is recommended for patients with cirrhosis and HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed and who are IFN ineligible.

Rating: Class IIa, Level C

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed and who are IFN eligible.

Rating: Class I, Level A

Recommended regimens for patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks with weight-based RBV is recommended for IFN-ineligible patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

Rating: Class I, Level A
Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for IFN-eligible patients with HCV genotype 3 infection, in whom prior treatment with sofosbuvir and RBV has failed.

The following regimens are NOT recommended for patients with HCV genotype 3 infection, in whom prior treatment with PEG-IFN and RBV has failed.

- PEG-IFN and RBV for 24 weeks to 48 weeks. Rating: Class IIb, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A
- Telaprevir-, boceprevir-, or simeprevir-based regimens. Rating: Class III, Level A

Several options with similar efficacy in general are recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed (listed in alphabetic order; see text).

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV treatment has failed.

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) (PrO) and weight-based RBV for 12 weeks is recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Daily sofosbuvir (400 mg) for 12 weeks and daily weight-based RBV plus weekly PEG-IFN for 12 weeks is recommended for retreatment of IFN-eligible patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for retreatment of patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.

The following regimens are NOT recommended for patients with HCV genotype 4 infection, in whom prior treatment with PEG-IFN and RBV has failed.
PEG-IFN and RBV with or without telaprevir or boceprevir. Rating: Class IIb, Level A

Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A

Recommended regimen for patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) for 12 weeks is recommended for patients with HCV genotype 5 or 6 infection, in whom prior treatment with PEG-IFN and RBV has failed.

Rating: Class IIa, Level C

Recommended regimen for IFN-eligible patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Daily sofosbuvir (400 mg) and weight-based RBV plus weekly PEG-IFN for 12 weeks is an alternative regimen for IFN-eligible patients with HCV genotype 5 or 6 infection, in whom prior treatment has failed.

Rating: Class IIa, Level C

The following regimens are NOT recommended for patients with HCV genotype 5 or 6 infection in whom prior treatment has failed.

- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A
- Telaprevir- or boceprevir-based regimens. Rating: Class III, Level A

Changes made on August 7, 2015.
MONITORING PATIENTS WHO ARE STARTING HEPATITIS C TREATMENT, ARE ON TREATMENT, OR HAVE COMPLETED THERAPY

Expansions and notes for abbreviations used in this section can be found in Methods Table 3 [1].

A summary of recommendations for monitoring is found in the BOX [2].

This section provides guidance on monitoring patients with chronic hepatitis C who are starting treatment, are on treatment, or have completed treatment. The section is divided into 3 parts: pretreatment and on-treatment monitoring, posttreatment follow-up for persons in whom treatment has failed to clear virus, and posttreatment follow-up for those who achieved a sustained virologic response (SVR; virologic cure).

Recommended assessments prior to starting antiviral therapy.

Assessment of potential drug-drug interactions with concomitant medications is recommended prior to starting antiviral therapy.

The following laboratory tests are recommended within 12 weeks prior to starting antiviral therapy:

- Complete blood count (CBC); international normalized ratio (INR)
- Hepatic function panel (albumin, total and direct bilirubin, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels)
- Thyroid-stimulating hormone (TSH) if IFN is used
- Calculated glomerular filtration rate (GFR)

The following laboratory testing is recommended at any time prior to starting antiviral therapy:

- HCV genotype and subtype
- Quantitative HCV viral load, except in the circumstance that a quantitative viral load will influence duration of therapy
Recommended monitoring during antiviral therapy.

Clinic visits or telephone contact are recommended as clinically indicated during treatment to ensure medication adherence and to monitor for adverse events and potential drug-drug interactions with newly prescribed medications.

Complete blood count (CBC), creatinine level, calculated glomerular filtration rate (GFR), and hepatic function panel are recommended after 4 weeks of treatment and as clinically indicated. Thyroid-stimulating hormone (TSH) is recommended every 12 weeks for patients receiving IFN. More frequent assessment for drug-related toxic effects (eg, CBC for patients receiving RBV) is recommended as clinically indicated.

Any 10-fold increase in alanine aminotransferase (ALT) activity at week 4 should prompt discontinuation of therapy. Any increase in ALT of less than 10-fold at week 4 and accompanied by any weakness, nausea, vomiting, jaundice, or increased bilirubin, alkaline phosphatase, or international normalized ratio should also prompt discontinuation of therapy. Asymptomatic increases in ALT of less than 10-fold elevated at week 4 should be closely monitored and repeated at week 6 and week 8. If levels remain persistently elevated, consideration should be given to discontinuation of therapy.

Rating: Class I, Level B

Quantitative HCV viral load testing is recommended after 4 weeks of therapy and at 12 weeks following completion of therapy. Antiviral drug therapy should NOT be interrupted or discontinued if HCV RNA levels are not performed or available during treatment.

Quantitative HCV viral load testing can be considered at the end of treatment and 24 weeks or longer following the completion of therapy.

Rating: Class I, Level B

Recommendations for discontinuation of treatment because of lack of efficacy.

If quantitative HCV viral load is detectable at week 4 of treatment, repeat
quantitative HCV RNA viral load testing is recommended after 2 additional weeks of treatment (treatment week 6). If quantitative HCV viral load has increased by greater than 10-fold (>1 log_{10} IU/mL) on repeat testing at week 6 (or thereafter), then discontinuation of HCV treatment is recommended.

The significance of a positive HCV RNA test result at week 4 that remains positive, but lower, at week 6 or week 8 is unknown. No recommendation to stop therapy or extend therapy can be provided at this time.

Rating: Class III, Level C

Recommended monitoring for pregnancy-related issues prior to and during antiviral therapy that includes RBV.

Women of childbearing age should be cautioned not to become pregnant while receiving RBV-containing antiviral regimens, and for up to 6 months after stopping.

Rating: Class I, Level C

Serum pregnancy testing is recommended for women of childbearing age prior to beginning treatment with a regimen that includes RBV.

Rating: Class I, Level C

Assessment of contraceptive use and of possible pregnancy is recommended at appropriate intervals during (and for 6 months after) RBV treatment for women of childbearing potential, and for female partners of men who receive RBV treatment.

Rating: Class I, Level C

The following regimens are NOT recommended with regard to pregnancy-related issues.

Treatment with RBV is NOT recommended for pregnant women or for women who are unwilling to adhere to use of adequate contraception, including those who are receiving RBV themselves or are sexual partners of male patients who are receiving RBV.

Rating: Class III, Level C
Pretreatment and On-Treatment Monitoring

The pretreatment testing described here assumes that a decision to treat with antiviral medications has already been made and that the testing involved in deciding to treat, including testing for HCV genotype and assessment of hepatic fibrosis, has already been completed [see Whom and When to Treat [3]].

Prior to starting treatment, patients should be evaluated for potential drug-drug interactions with selected antiviral medications (eg, http://www.hep-druginteractions.org/ [4]). Patients should also be educated on the proper administration of medications (eg, dose of medications, frequency of taking medicines, with or without food, missed doses, expected duration, adverse effects, etc), the crucial importance of adherence, and the necessity for close supervision and blood tests during and after treatment.

During treatment, individuals should be followed up at clinically appropriate intervals to ensure medication adherence, assess adverse events and potential drug-drug interactions, and monitor blood test results necessary for patient safety. Frequency and type of contact (eg, clinic visit, phone call, etc) are variable, but need to be sufficient to assess patient safety and response to treatment, as outlined above.

The assessment of HCV viral load at week 4 of therapy is useful to determine initial response to therapy and adherence. In phase III clinical trials, almost all patients who did not have cirrhosis had undetectable HCV RNA level at week 4; those with cirrhosis may require more than 4 weeks of treatment before HCV RNA level is undetectable. There are minimal data on how to use HCV RNA level during treatment to determine when to stop treatment for futility. The current recommendation to repeat quantitative HCV RNA testing at week 4 of treatment and to discontinue treatment if the quantitative HCV RNA level increases by more than 10-fold (>1 log$_{10}$ IU/mL) is based on expert opinion. There are no data to support stopping treatment based on detectable HCV RNA results at weeks 2, 3, or 4 of treatment, or that detectable HCV RNA level at these time points signifies medication nonadherence. Although HCV RNA testing is recommended at week 4 of treatment, the absence of an HCV RNA level at week 4 is not a reason to discontinue treatment. Quantitative HCV RNA level testing at the end of treatment will help to differentiate viral breakthrough from relapse, if necessary. Some may choose to forego end-of-treatment viral load testing, given the high rates of viral response with the newer regimens, and to focus on the week 12 posttreatment viral load. Virologic relapse is rare at 12 or more weeks after completing treatment. Nevertheless, repeat quantitative HCV RNA testing can be considered at 24 or more weeks after discontinuing treatment for selected patients.

The availability of IFN-free treatment regimens has simplified hepatitis C therapy by allowing shorter-duration, all-oral therapy for most patients. However, PEG-IFN and RBV–based regimens are beneficial for selected patients, and these require specific monitoring for the toxic effects (eg, anemia or neutropenia) associated with PEG-IFN or RBV use. (RBV prescribing information, 2014 [5]); (PEG-IFN prescribing information, 2014 [6]) In patients with a history of cardiovascular disease, RBV dose reduction to 600 mg
per day is recommended for those with hemoglobin (Hgb) level below 10 g/dL and discontinuation is recommended for those with Hgb below 8.5 g/dL. In addition, although the newer all-oral regimens are generally well tolerated, adverse effects do occur. Expansion of therapy into a large population of patients may reveal toxic effects that are not apparent in registration trials. Furthermore, drug-drug interactions are possible.

RBV causes fetal death and fetal abnormalities in animals and thus it is imperative for persons of childbearing potential who receive the drug to use at least 2 reliable forms of effective contraception during treatment and for a period of 6 months thereafter. It is recommended that the health care practitioner document the discussion of potential teratogenic effects of RBV in the patient’s medical record. Sofosbuvir, ledipasvir, paritaprevir, ombitasvir, and dasabuvir are pregnancy category B, although there are limited data on the use of these drugs in pregnancy. It is recommended that female patients have a thorough discussion of potential pregnancy-related drug effects prior to starting antiviral treatment. Given the relatively short duration of treatment and the potential to use RBV-free regimens in many patients, the potential risks and benefits of delaying pregnancy until HCV antiviral treatment is completed should be considered. The education of patients and caregivers about potential adverse effects and their management is an integral component of treatment and is important for a successful outcome in all patient populations. For patients with compensated cirrhosis who are undergoing therapy with the daily fixed-dose combination of paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) with or without twice-daily dosed dasabuvir (250 mg), initial monitoring of liver tests and assessment for clinical evidence of decompensation should be performed more frequently (every 1-2 weeks) during the first 4 weeks of treatment to ensure early detection of potential drug-induced liver injury (see Initial Treatment [7] or Retreatment [8] section).

Monitoring Patients Who Have Completed Treatment

Patients who do not achieve an SVR, because of failure of the treatment to clear or to maintain clearance of HCV infection with relapse after treatment completion, have ongoing HCV infection and the possibility of continued liver injury and transmission. Such patients should be monitored for progressive liver disease and considered for retreatment when alternative treatments are available. Patients who have undetectable HCV RNA in the serum, when assessed by a sensitive polymerase chain reaction (PCR) assay, 12 or more weeks after completing treatment, are deemed to have achieved an SVR. In these patients, HCV-related liver injury stops, although the patients remain at risk for non–HCV-related liver disease, such as fatty liver disease or alcoholic liver disease. Patients with cirrhosis remain at risk for developing hepatocellular carcinoma.

Recommended monitoring for patients in whom treatment failed to achieve a sustained virologic response.

Disease progression assessment every 6 months to 12 months with a hepatic function panel, complete blood count (CBC), and international normalized ration (INR) is recommended.

Rating: Class I, Level C

Surveillance for hepatocellular carcinoma with ultrasound testing every 6 months is recommended for patients with advanced fibrosis (ie, Metavir
stage F3 or F4).

Rating: Class I, Level C

Endoscopic surveillance for esophageal varices is recommended if cirrhosis is present.

Rating: Class I, Level A

Evaluation for retreatment is recommended as effective alternative treatments become available.

Rating: Class I, Level C

The following monitoring is NOT routinely recommended prior to or during therapy.

Routine monitoring for HCV drug resistance-associated variants during therapy is NOT recommended, with 2 exceptions:

- For patients with HCV genotype 1 infection whose prior treatment with a nonstructural protein 5A (NS5A) inhibitor-containing regimen failed and who have cirrhosis or require urgent retreatment, pretreatment testing for resistance-associated variants that confer decreased susceptibility to NS3 protease inhibitors and to NS5A inhibitors is recommended (for further details, see Retreatment section)
- For patients with HCV genotype 1a infection with cirrhosis who are treatment naive or whose prior treatment with PEG-IFN and RBV failed and who are being considered for treatment with simeprevir and sofosbuvir, pretreatment testing for the Q80K NS3 variant is recommended (for further details, see Initial Treatment or Retreatment sections)

Rating: Class IIb, Level C

Patients in whom treatment failed to achieve an SVR remain at risk for ongoing liver injury and progression of liver fibrosis. (Dienstag, 2011) Thus, patients in whom treatment fails should be monitored for signs and symptoms of cirrhosis. There is currently no conclusive evidence to suggest that failure of antiviral treatment results in more severe liver injury or more rapidly progressive liver disease than would have occurred if the patient had not received treatment.

A small number of patients in whom an initial antiviral treatment failed have achieved SVR when treated with the same drugs for a longer duration, or when treated with alternative antiviral regimens. (Lawitz, 2014a) Thus, patients in whom treatment has failed to achieve an SVR should be considered for treatment when alternative antiviral regimens are available. Advice from a physician experienced in HCV treatment may be beneficial when considering retreatment after antiviral therapy failure.

Patients in whom antiviral therapy failed to achieve an SVR may harbor viruses that are resistant to 1 or
more of the antivirals at the time of virologic “breakthrough.” (Lawitzs, 2014a [13]; Schneider, 2014 [14]) However, there is no evidence to date that the presence of resistance-associated variants (RAVs) results in more progressive liver injury than would have occurred if the patient did not have resistant viruses. The presence of baseline RAVs in treatment-naive persons does not preclude achieving an SVR with a combination direct-acting antiviral regimen. Furthermore, RAVs are often not detectable with routine (population sequencing) detection methods, nor with more sensitive tests of HCV variants, after patients are followed up for several months. (Schneider, 2014 [14]) Subsequent retreatment with combination antivirals, particularly regimens containing antiviral drugs that have a high barrier to resistance, such as nonstructural protein 5B (NS5B) nucleotide polymerase inhibitors (eg, sofosbuvir), may overcome the presence of resistance to 1 or more antivirals. There are 2 situations in which baseline testing for RAVs is recommended in the treatment of HCV genotype 1 infection. First, for those patients whose prior treatment with an NS5A inhibitor–containing failed and who have cirrhosis or require urgent retreatment, testing for RAVs that confer decreased susceptibility to NS3 protease inhibitors (eg, Q80K) and to NS5A inhibitors should be performed using commercially available assays. In a pilot study of 41 patients with or without cirrhosis who did not achieve an SVR with 8 weeks or 12 weeks of therapy with the daily fixed-dose combination of ledipasvir (90 mg) and sofosbuvir (400 mg) (hereafter ledipasvir/sofosbuvir) who were retreated with 24 weeks of ledipasvir/sofosbuvir, rates of SVR at 12 weeks varied according to the presence or absence of NS5A inhibitor RAVs. Among 11 patients in whom NS5A inhibitor RAVs were not detected, SVR occurred in 11 of 11 (100%); in contrast, among 30 patients in whom NS5A inhibitor RAVs were detected, SVR occurred in 18 of 30 (60%). Importantly, NS5B inhibitor RAVs (eg, S282T) known to confer decreased activity of sofosbuvir were observed in 3 of 12 (25%) patients for whom the retreatment regimen was not successful. The additional finding of the Q80K variant has implications for the retreatment regimen selected for these patients (see Retreatment [15] section). Second, for treatment-naive patients or those experienced with PEG-IFN and RBV who have HCV genotype 1a infection and cirrhosis, testing for the Q80K NS3 RAV is recommended when simeprevir and sofosbuvir are being considered as treatment. In the OPTIMIST-2 study, in which patients with cirrhosis were treated with simeprevir and sofosbuvir, the presence of NS3 RAVs, specifically the Q80K polymorphism, was associated with a decreased SVR rate. SVR occurred in 25 of 34 (74%) patients with HCV genotype 1a infection and the Q80K RAV and in 35 of 38 (92%) patients with HCV genotype 1a infection without the Q80K RAV (see Initial Treatment [16] or Retreatment [17] sections).

If there remains uncertainty regarding the applicability of RAV testing, consultation with an expert in the treatment of HCV infection may be useful.

Recommended follow-up for patients who achieve a sustained virologic response (SVR).

For patients who do not have advanced fibrosis (ie, those with Metavir stage F0-F2), recommended follow-up is the same as if they were never infected with HCV.

Rating: Class I, Level B

Assessment for HCV recurrence or reinfection is recommended only if the patient has ongoing risk for HCV infection or otherwise unexplained hepatic dysfunction develops. In such cases, a quantitative HCV RNA
assay rather than an anti-HCV serology test is recommended to test for HCV recurrence or reinfection.

Rating: Class I, Level A

Surveillance for hepatocellular carcinoma with twice-yearly ultrasound testing is recommended for patients with advanced fibrosis (ie, Metavir stage F3 or F4) who achieve an SVR.

Rating: Class I, Level C

A baseline endoscopy is recommended to screen for varices if cirrhosis is present. Patients in whom varices are found should be treated and followed up as indicated.

Rating: Class I, Level C

Assessment of other causes of liver disease is recommended for patients who develop persistently abnormal liver tests after achieving an SVR.

Rating: Class I, Level C

With the advent of highly effective HCV antiviral regimens, the likelihood of achieving an SVR among adherent, immunologically competent, treatment-naive patients with compensated liver disease generally exceeds 90%. Of patients who achieved an SVR with PEG-IFN and RBV treatment, more than 99% have remained free of HCV infection when followed up for 5 years after completing treatment. (Manns, 2013[18]) Thus, achieving an SVR is considered a virologic cure of HCV infection.

SVR typically aborts progression of liver injury with regression of liver fibrosis in most but not all treated patients. (Morisco, 2013[19]); (Morgan, 2010[20]); (George, 2009[21]); (Morgan, 2013[22]); (Singal, 2010[23]) Because of lack of progression, patients without advanced liver fibrosis (ie, Metavir stage F0-F2) who achieve an SVR should receive standard medical care that is recommended for patients who were never infected with HCV.

Among patients with advanced liver fibrosis (ie, Metavir stage F3 or F4) who achieve an SVR, decompensated liver disease (with the exception of hepatocellular carcinoma) rarely develops during follow-up, and overall survival is prolonged. (Morisco, 2013[19]); (Morgan, 2010[20]); (George, 2009[21]); (Morgan, 2013[22]); (Singal, 2010[23]) Patients who have advanced fibrosis or cirrhosis continue to be at risk for development of hepatocellular carcinoma after achieving an SVR, although the risk in these patients is lower than the risk in persistently viremic patients. (Morisco, 2013[19]); (Morgan, 2010[20]); (George, 2009[21]); (Morgan, 2013[22]); (Singal, 2010[23]) Patients with cirrhosis who achieve SVR experience increased survival (compared with patients with cirrhosis who are untreated or in whom treatment fails), but still may be at some risk for hepatocellular carcinoma; thus, they should continue to undergo regular surveillance for hepatocellular carcinoma despite the lowered risk that results after viral eradication. (Bruix, 2011[24]) The risk of hepatocellular carcinoma among patients with advanced fibrosis prior to treatment but who have regression to minimal fibrosis after treatment is not known. In the
absence of data to the contrary, such patients remain at some risk for hepatocellular carcinoma and should be monitored at regular intervals for hepatocellular carcinoma.

Liver fibrosis and liver function test results improve in most patients who achieve an SVR. (Morisco, 2013 [19]); (Morgan, 2010 [20]); (George, 2009 [21]); (Morgan, 2013 [22]); (Singal, 2010 [23]) Bleeding from esophageal varices is rare after an SVR. (Morisco, 2013 [19]); (Morgan, 2010 [20]); (George, 2009 [21]); (Morgan, 2013 [22]); (Singal, 2010 [23]) Patients with cirrhosis should receive routine surveillance endoscopy for detection of esophageal varices if not previously done and these should be treated or followed up as indicated. (Garcia-Tsao, 2007 [25])

Patients in whom an SVR is achieved but who have another potential cause of liver disease (eg, excessive alcohol use, metabolic syndrome with or without proven fatty liver disease, or iron overload) remain at risk for progression of fibrosis. It is recommended that such patients be educated about the risk of liver disease and monitored for liver disease progression with periodic physical examinations, blood tests, and potentially, tests of liver fibrosis by a liver disease specialist.

Periodically testing patients with ongoing risk for HCV infection (eg, illicit drug use, high-risk sexual exposure) for HCV reinfection is recommended. Flares in liver enzyme test results should prompt evaluation of possible de novo reinfection with HCV through a new exposure (see Management of Acute HCV Infection [26]). Antibody to HCV (anti-HCV) remains positive in most patients following an SVR. Thus, testing for reinfection with HCV is recommended and should be performed with an assay that detects HCV RNA (eg, a quantitative HCV RNA test).

Monitoring for HCV during chemotherapy and immunosuppression.

Prospective monitoring for HCV recurrence among patients who achieved a sustained virologic response and who are receiving immunosuppressive treatment (eg, systemic corticosteroids, antimetabolites, chemotherapy, etc) is NOT routinely recommended.

Rating: Class III, Level C

Acute liver injury is common among patients receiving chemotherapy or immunosuppressive agents; thus, testing for hepatitis viruses should be included in the laboratory assessment of the cause of liver injury. However, while individuals with inactive (no detectable virus) or past hepatitis B virus infection may experience reactivation and clinically apparent hepatitis during immunosuppressive treatment or chemotherapy, this does not occur with hepatitis C infection. Although some patients with active HCV infection, primarily those with hematologic malignancy, may have a flare in their liver enzymes during chemotherapy, this is unusual.(Mahale, 2012 [27]) Furthermore, reactivation of past HCV infection, such as after SVR or spontaneous clearance, is not anticipated since there is no residual reservoir for the virus. Thus, in this latter group, routine testing of HCV RNA during immunosuppressive treatment or prophylactic administration of antivirals during immunosuppressive treatment is not recommended.

Changes made on December 11, 2015.
Monitoring Box. Summary of the Recommendations for Monitoring Patients Who Are Starting HCV Treatment, Are On Treatment, Or Have Completed Therapy

Recommended assessments prior to starting antiviral therapy.

Assessment of potential drug-drug interactions with concomitant medications is recommended prior to starting antiviral therapy.

The following laboratory tests are recommended within 12 weeks prior to starting antiviral therapy:

- Complete blood count (CBC); international normalized ratio (INR)
- Hepatic function panel (albumin, total and direct bilirubin, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels)
- Thyroid-stimulating hormone (TSH) if IFN is used
- Calculated glomerular filtration rate (GFR)

The following laboratory testing is recommended at any time prior to starting antiviral therapy:

- HCV genotype and subtype
- Quantitative HCV viral load, except in the circumstance that a quantitative viral load will influence duration of therapy

Rating for all statements above: Class I, Level C

Recommended monitoring during antiviral therapy.

Clinic visits or telephone contact are recommended as clinically indicated during treatment to ensure medication adherence and to monitor for adverse events and potential drug-drug interactions with newly
prescribed medications.

Complete blood count (CBC), creatinine level, calculated glomerular filtration rate (GFR), and hepatic function panel are recommended after 4 weeks of treatment and as clinically indicated. Thyroid-stimulating hormone (TSH) is recommended every 12 weeks for patients receiving IFN. More frequent assessment for drug-related toxic effects (eg, CBC for patients receiving RBV) is recommended as clinically indicated.

Any 10-fold increase in alanine aminotransferase (ALT) activity at week 4 should prompt discontinuation of therapy. Any increase in ALT of less than 10-fold at week 4 and accompanied by any weakness, nausea, vomiting, jaundice, or increased bilirubin, alkaline phosphatase, or international normalized ratio should also prompt discontinuation of therapy. Asymptomatic increases in ALT of less than 10-fold elevated at week 4 should be closely monitored and repeated at week 6 and week 8. If levels remain persistently elevated, consideration should be given to discontinuation of therapy.

Rating: Class I, Level B

Quantitative HCV viral load testing is recommended after 4 weeks of therapy and at 12 weeks following completion of therapy. Antiviral drug therapy should NOT be interrupted or discontinued if HCV RNA levels are not performed or available during treatment.

Quantitative HCV viral load testing can be considered at the end of treatment and 24 weeks or longer following the completion of therapy.

Rating: Class I, Level B

Recommendations for discontinuation of treatment because of lack of efficacy.

If quantitative HCV viral load is detectable at week 4 of treatment, repeat quantitative HCV RNA viral load testing is recommended after 2 additional weeks of treatment (treatment week 6). If quantitative HCV viral load has increased by greater than 10-fold (>1 log\(_{10}\) IU/mL) on repeat testing at week 6 (or thereafter), then discontinuation of HCV treatment is recommended.

The significance of a positive HCV RNA test result at week 4 that remains positive, but lower, at week 6 or week 8 is unknown. No recommendation to stop therapy or extend therapy can be provided at this time.

Rating: Class III, Level C
Recommended monitoring for pregnancy-related issues prior to and during antiviral therapy that includes RBV.

Women of childbearing age should be cautioned not to become pregnant while receiving RBV-containing antiviral regimens, and for up to 6 months after stopping.

Rating: Class I, Level C

Serum pregnancy testing is recommended for women of childbearing age prior to beginning treatment with a regimen that includes RBV.

Rating: Class I, Level C

Assessment of contraceptive use and of possible pregnancy is recommended at appropriate intervals during (and for 6 months after) RBV treatment for women of childbearing potential, and for female partners of men who receive RBV treatment.

Rating: Class I, Level C

The following regimens are NOT recommended with regard to pregnancy-related issues.

Treatment with RBV is NOT recommended for pregnant women or for women who are unwilling to adhere to use of adequate contraception, including those who are receiving RBV themselves or are sexual partners of male patients who are receiving RBV.

Rating: Class III, Level C

Female patients who have received RBV and sexual partners of male patients who have received RBV should NOT become pregnant for at least 6 months after stopping RBV.

Rating: Class III, Level C

Recommended monitoring for patients in whom treatment failed to achieve a sustained virologic response.

Disease progression assessment every 6 months to 12 months with a hepatic function panel, complete blood count (CBC), and international normalized ration (INR) is recommended.

Rating: Class I, Level C
Surveillance for hepatocellular carcinoma with ultrasound testing every 6 months is recommended for patients with advanced fibrosis (ie, Metavir stage F3 or F4).

Rating: Class I, Level C

Endoscopic surveillance for esophageal varices is recommended if cirrhosis is present.

Rating: Class I, Level A

Evaluation for retreatment is recommended as effective alternative treatments become available.

Rating: Class I, Level C

The following monitoring is NOT routinely recommended prior to or during therapy.

Routine monitoring for HCV drug resistance-associated variants during therapy is NOT recommended, with 2 exceptions:

- For patients with HCV genotype 1 infection whose prior treatment with a nonstructural protein 5A (NS5A) inhibitor–containing regimen failed and who have cirrhosis or require urgent retreatment, pretreatment testing for resistance-associated variants that confer decreased susceptibility to NS3 protease inhibitors and to NS5A inhibitors is recommended (for further details, see Retreatment section)
- For patients with HCV genotype 1a infection with cirrhosis who are treatment naive or whose prior treatment with PEG-IFN and RBV failed and who are being considered for treatment with simeprevir and sofosbuvir, pretreatment testing for the Q80K NS3 variant is recommended (for further details, see Initial Treatment or Retreatment sections)

Rating: Class IIb, Level C

Recommended follow-up for patients who achieve a sustained virologic response (SVR).

For patients who do not have advanced fibrosis (ie, those with Metavir stage F0-F2), recommended follow-up is the same as if they were never infected with HCV.

Rating: Class I, Level B

Assessment for HCV recurrence or reinfection is recommended only if the patient has ongoing risk for HCV infection or otherwise unexplained hepatic dysfunction develops. In such cases, a quantitative HCV RNA assay rather than an anti-HCV serology test is recommended to test for
HCV recurrence or reinfection.

Rating: Class I, Level A

Surveillance for hepatocellular carcinoma with twice-yearly ultrasound testing is recommended for patients with advanced fibrosis (ie, Metavir stage F3 or F4) who achieve an SVR.

Rating: Class I, Level C

A baseline endoscopy is recommended to screen for varices if cirrhosis is present. Patients in whom varices are found should be treated and followed up as indicated.

Rating: Class I, Level C

Assessment of other causes of liver disease is recommended for patients who develop persistently abnormal liver tests after achieving an SVR.

Rating: Class I, Level C

Monitoring for HCV during chemotherapy and immunosuppression.

Prospective monitoring for HCV recurrence among patients who achieved a sustained virologic response and who are receiving immunosuppressive treatment (eg, systemic corticosteroids, antimetabolites, chemotherapy, etc) is NOT routinely recommended.

Rating: Class III, Level C

Changes made on August 7, 2015.
UNIQUE PATIENT POPULATIONS: PATIENTS WITH HIV/HCV COINFECTION

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

The summary of recommendations for HIV-coinfected patients is in the BOX [2].

This section provides guidance on the treatment of chronic HCV infection in HIV/HCV-coinfected patients. For individuals with acute HCV infection, please refer to the Acute HCV [3] section. HIV/HCV-coinfected patients suffer from more liver-related morbidity and mortality, nonhepatic organ dysfunction, and overall mortality than HCV-monoinfected patients. (Lo Re, 2014 [4]); (Chen, 2009 [5]) Even in the potent HIV antiretroviral therapy era, HIV infection remains independently associated with advanced liver fibrosis and cirrhosis in patients with HCV coinfection. (Thein, 2008b [6]); (de Ledinghen, 2008 [7]); (Fierer, 2013 [8]); (Kirk, 2013 [9])

Similar to HCV-monoinfected patients, HIV/HCV-coinfected patients cured with PEG-IFN and RBV have lower rates of hepatic decompensation, hepatocellular carcinoma (HCC), and liver-related mortality. (Berenguer, 2009 [10]); (Limketkai, 2012 [11]); (Mira, 2013 [12]) Uptake of HCV therapy was lower in the HIV/HCV-coinfected population, owing to historically lower response rates, patient comorbidities, patient and practitioner perceptions, and adverse events associated with IFN-based therapy. (Mehta, 2006b [13]); (Thomas, 2008 [14]) With the availability of HCV direct-acting antivirals (DAAs), these barriers should diminish; however, treatment of HIV/HCV-coinfected patients requires continued awareness and attention to the complex drug interactions that can occur between DAAs and antiretroviral medications. Drug interactions with DAAs and antiretroviral agents are summarized below as well as in the Department of Health and Human Services treatment guidelines, www.aidsinfo.nih.gov [15].

Recommendations related to HCV medication interactions with HIV antiretroviral medications.

Antiretroviral drug switches, when needed, should be done in collaboration with the HIV practitioner. For HIV antiretroviral and HCV direct-acting antiviral combinations not addressed below, expert
consultation is recommended.

Rating: Class I, Level A

Daclatasvir:
- Daclatasvir requires dose adjustment with ritonavir-boosted atazanavir (a decrease to 30 mg daily) and efavirenz or etravirine (an increase to 90 mg daily).
Rating: Class IIa, Level B

Fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg):
- Because ledipasvir increases tenofovir levels, when given as tenofovir disoproxil fumarate, concomitant use mandates consideration of creatinine clearance (CrCl) rate and should be avoided in those with CrCl below 60 mL/min. Because potentiation of this effect occurs when tenofovir is used with ritonavir-boosted HIV protease inhibitors, ledipasvir should be avoided with this combination (pending further data) unless antiretroviral regimen cannot be changed and the urgency of treatment is high.
Rating: Class IIa, Level C

For combinations expected to increase tenofovir levels, baseline and ongoing assessment for tenofovir nephrotoxicity is recommended.
Rating: Class IIa, Level C

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (paritaprevir/ritonavir/ombitasvir plus dasabuvir or PrOD):
- Paritaprevir/ritonavir/ombitasvir plus dasabuvir should be used with antiretroviral drugs with which they do not have substantial interactions: atazanavir, dolutegravir, emtricitabine, enfuvirtide, lamivudine, raltegravir, and tenofovir.
- The dose of ritonavir used for boosting of HIV protease inhibitors may need to be adjusted (or held) when administered with paritaprevir/ritonavir/ombitasvir plus dasabuvir and then restored when HCV treatment is completed. The HIV protease inhibitor should be administered at the same time as the fixed-dose HCV combination.
Rating: Class IIa, Level C

Simeprevir:
- Simeprevir should be used with antiretroviral drugs with which it does not have clinically significant interactions: abacavir, emtricitabine, enfuvirtide, lamivudine, maraviroc, raltegravir (and probably dolutegravir), rilpivirine, and tenofovir.
Rating: Class IIa, Level B
The following are NOT recommended or should not be used.

Antiretroviral treatment interruption to allow HCV therapy is NOT recommended.

Rating: Class III, Level A

Ledipasvir/sofosbuvir should NOT be used with cobicistat when given with tenofovir disoproxil fumarate.

Rating: Class III, Level C

Sofosbuvir or ledipasvir/sofosbuvir should NOT be used with tipranavir.

Rating: Class III, Level B

Paritaprevir/ritonavir/ombitasvir plus dasabuvir should NOT be used with darunavir, efavirenz, ritonavir-boosted lopinavir, or rilpivirine.

Rating: Class III, Level B

Paritaprevir/ritonavir/ombitasvir with or without dasabuvir should NOT be used in HIV/HCV-coinfected individuals who are not taking antiretroviral therapy.

Rating: Class III, Level B

RBV should NOT be used with didanosine, stavudine, or zidovudine.

Rating: Class III, Level B

Simeprevir should NOT be used with cobicistat, efavirenz, etravirine, nevirapine, or any HIV protease inhibitor.

Rating: Class III, Level B

Pharmacokinetics and Drug Interactions

Extensive recommendations for antiretroviral therapy use, including for persons anticipating HCV treatment, are found at jama.jamanetwork.com [16] and aidsinfo.nih.gov [17].

Antiretroviral drug switches may be performed to allow compatibility of DAAs, with the goal of maintaining HIV suppression without compromising future options. Considerations include prior treatment history, responses to antiretroviral therapy, resistance profiles, and drug tolerance. ([Gunthard, 2014](http://jama.jamanetwork.com) [18]; (Panel on Antiretroviral Guidelines for Adults and Adolescents, 2014) [19]; aidsinfo.nih.gov [17])

Treatment interruption in HIV/HCV-coinfected individuals is not recommended, as it is associated with
increased cardiovascular events (Strategies for Management of Antiretroviral Therapy (SMART) Study Group, 2006 [20]) and increased rates of fibrosis progression and liver-related events. (Tedaldi, 2008 [21]); (Thorpe, 2011 [22]) If HCV treatment is nonurgent and antiretroviral compatibility and safety with DAAs is unclear, expert consultation should be sought or postponing HCV treatment should be considered until additional data are available.

Daclatasvir

Daclatasvir is approved by the US Food and Drug Administration (FDA) for use in combination with sofosbuvir for persons with HCV genotype 3 infection. Daclatasvir is a substrate and a very weak inducer of CYP3A4 and a substrate and inhibitor of P-gp. Daclatasvir also inhibits OATP1B1, BCRP, and organic cation transporter 1. Given that daclatasvir is a CYP3A4 substrate, it is susceptible to drug interactions with potent inducers and inhibitors of this enzyme. An increased dose of daclatasvir (120 mg vs 60 mg) was studied in combination with efavirenz, a potent CYP3A4 inducer, in uninfected volunteers. The results suggested that doubling the daclatasvir dose was excessive, and based on modeling and simulation, a 90 mg dose of daclatasvir is recommended with efavirenz. (Bifano, 2013 [23]) A reduced dose of daclatasvir (20 mg vs 60 mg) was studied in combination with ritonavir-boosted atazanavir, a potent CYP3A4 inhibitor, in uninfected volunteers. The results suggested that dose reduction of daclatasvir to 20 mg was excessive, and based on modeling and simulation, a 30 mg dose of daclatasvir is recommended with ritonavir-boosted atazanavir. Based on the results of this study, a similar interaction was expected with ritonavir-boosted darunavir or lopinavir, and individuals received a reduced dose of daclatasvir 30 mg in the ALLY-2 trial (described below). Subsequent studies suggested that individuals should receive full doses of daclatasvir 60 mg with ritonavir-boosted darunavir or lopinavir. The pharmacokinetics of darunavir and lopinavir are not substantially affected by daclatasvir. (Gandhi, 2015 [24]) Daclatasvir does not have clinically significant interactions with tenofovir (Bifano, 2013 [23]) or dolutegravir. (Song, 2015 [25]) Daclatasvir has not been studied with entecavir, abacavir, rilpivirine, raltegravir, cobicistat-boosted elvitegravir, or maraviroc, but substantial interactions are not expected based on the pharmacology of these agents. There is potential for a decrease in daclatasvir levels with etravirine, and an increased dose (90 mg) of daclatasvir is recommended when used with etravirine, as with efavirenz. Antiretroviral agents allowed in the ALLY-2 trial, which determined the safety and efficacy of daclatasvir and sofosbuvir in HIV/HCV-coinfected individuals, were ritonavir-boosted atazanavir, darunavir, or lopinavir, efavirenz, nevirapine, rilpivirine, raltegravir, and dolutegravir. (Wyles, 2015 [26])

A table highlighting drug interactions with DAA and antiretroviral agents is provided. For interactions of nonantiretroviral medications with DAAs, a summary can be found here [27]. Another resource for screening for drug interactions with DAAs is the University of Liverpool website, www.hep-druginteractions.org [28].

Sofosbuvir

Sofosbuvir is not metabolized nor does it induce or inhibit any cytochrome P450 (CYP) enzymes. Sofosbuvir is a substrate (but not an inhibitor) of the drug transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Drug interaction studies with antiretroviral drugs (ie, efavirenz, tenofovir, emtricitabine, rilpivirine, ritonavir-boosted darunavir, and raltegravir) in uninfected persons identified no clinically significant interactions. (Kirby, 2013 [29]) Sofosbuvir is not recommended for use with tipranavir because of the potential of this antiretroviral drug to induce P-gp (see sofosbuvir prescribing [30] information).
Ledipasvir/Sofosbuvir

Ledipasvir is available only in a fixed-dose combination tablet with sofosbuvir (hereafter ledipasvir/sofosbuvir). Ledipasvir undergoes minimal metabolism and does not inhibit or induce CYP enzymes. Ledipasvir is a substrate of P-gp and an inhibitor of P-gp and BCRP. Drug interaction studies of ledipasvir (with or without sofosbuvir) with antiretroviral drugs in uninfected persons did not identify clinically significant interactions with abacavir, dolutegravir, emtricitabine, lamivudine, raltegravir, or rilpivirine. (German, 2014 [31]; Garrison, 2015 [32]) Interactions with maraviroc and enfuvirtide are not expected based on their pharmacologic profiles. Ledipasvir area under the curve (AUC) is decreased by 34% when coadministered with efavirenz-containing regimens and increased by 96% when coadministered with ritonavir-boosted atazanavir (German, 2014 [31]). No dose adjustments of ledipasvir are recommended to account for these interactions.

Ledipasvir increases tenofovir levels which may increase the risk of tenofovir-associated renal toxicity. The magnitude of the increase in tenofovir levels is dependent on other concomitant antiretroviral drugs. With the addition of ledipasvir/sofosbuvir, tenofovir levels are increased with efavirenz, rilpivirine, (German, 2014 [31]) dolutegravir, ritanavir-boosted atazanavir, and ritanavir-boosted darunavir. (German, 2015 [33]) The absolute tenofovir levels are highest in the presence of ritanavir-boosted protease inhibitors. When ledipasvir/sofosbuvir is administered to individuals taking tenofovir disoproxil fumarate and ritanavir-boosted HIV protease inhibitors, the tenofovir levels exceed those deemed renally safe. Thus, to date, individuals receiving ritanavir-boosted HIV protease inhibitors have been excluded from clinical studies of ledipasvir/sofosbuvir. Individuals receiving elvitegravir and cobicistat have also been excluded from clinical studies of ledipasvir/sofosbuvir because cobicistat trough levels are increased 4-fold (see ledipasvir and sofosbuvir prescribing information) [34] by ledipasvir.

In the ERADICATE study [35], ledipasvir/sofosbuvir was administered to 37 HIV/HCV-coinfected patients taking combination antiretroviral therapy, including 16 taking regimens containing tenofovir disoproxil fumarate, emtricitabine, and efavirenz, and all with baseline creatinine clearance (CrCl) rates of 60 mL/min or higher. (Osinusi, 2014a [36]) Changes in creatinine level or glomerular filtration rate (GFR) in these 37 patients were similar to patients not taking antiretroviral therapy. Further safety data from the phase III ION-4 study are described below [35] regarding interactions between ledipasvir/sofosbuvir and raltegravir, rilpivirine, or efavirenz, each in combination with fixed-dose tenofovir disoproxil fumarate and emtricitabine.

Renal parameters should therefore be checked at baseline and regularly thereafter while on therapy when ledipasvir/sofosbuvir is administered with tenofovir disoproxil fumarate-containing regimens. Baseline parameters should include measuring creatinine level, electrolytes (including phosphorus), and urinary protein and glucose levels, according to recent guidelines for management of chronic kidney disease in those with HIV that include indications for nephrology consultation. (Lucas, 2014 [37]) Changing antiretroviral therapy or delaying HCV treatment if nonurgent may be considered for those at high risk for renal toxicity (especially those with a CrCl rate between 30 mL/min and 60 mL/min or who have preexisting evidence of Fanconi syndrome) and particularly those taking tenofovir disoproxil fumarate and a ritonavir-boosted HIV protease inhibitor, as there are currently few efficacy or safety data for these combinations. (See ledipasvir/sofosbuvir prescribing information [34]) If the urgency of HCV treatment and the risk of switching antiretroviral regimens are both high and there is no safer alternative to ledipasvir/sofosbuvir, then frequent monitoring (every 2-4 weeks) of urine parameters is recommended for concomitant use with tenofovir disoproxil fumarate and a ritonavir-boosted HIV protease inhibitor. Tenofovir disoproxil fumarate should also be properly dosed and adjusted for CrCl rate at baseline and
while on therapy. ([Lucas, 2014](#))

Fixed-dose Paritaprevir, Ritonavir, and Ombitasvir Plus Dasabuvir

Paritaprevir is an inhibitor of the organic anion-transporting polypeptide 1B1 (OATP1B1). Ritonavir is coformulated with paritaprevir and ombitasvir and used to improve the pharmacokinetics of paritaprevir. As ritonavir has anti-HIV activity, HIV/HCV-coinfected patients should have achieved HIV RNA suppression prior to initiation of this regimen; those not taking antiretroviral therapy should avoid use of this fixed-dose combination due to the potential for low-dose ritonavir to select for HIV protease inhibitor resistance.

Ritonavir-boosted paritaprevir, ombitasvir, and dasabuvir are metabolized by and inhibitors of CYP enzymes (3A4 and 2C8), P-gp, BCRP and the hepatic uptake transporter OATP1B1. Studies of uninfected volunteers did not reveal notable pharmacologic interactions with paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) plus dasabuvir (250 mg) (hereafter PrOD) or tenofovir disoproxil fumarate and emtricitabine (when tested separately from other fixed-dose combinations), raltegravir, ([Khatri, 2014b](#)) abacavir, lamivudine, or dolutegravir. ([Khatri, 2015](#)) In uninfected volunteers, when PrOD was combined with efavirenz, emtricitabine, and tenofovir disoproxil fumarate, clinically significant gastrointestinal and neurologic adverse events occurred, coincident with elevations of alanine aminotransferase levels. When PrOD was combined with rilpivirine, exposures to rilpivirine were substantially increased. Therefore, rilpivirine and efavirenz should not be used with PrOD.

Because ritonavir is a component of the fixed-dose combination of paritaprevir and ombitasvir, the total daily dose of ritonavir must be carefully considered when using PrOD with ritonavir-boosted HIV protease inhibitors. Coadministration with ritonavir-boosted lopinavir would result in a 300 mg daily dose of ritonavir, a dose associated with substantial gastrointestinal adverse effects; this combination is not recommended. Once- and twice-daily doses of darunavir have been studied with PrOD in uninfected individuals. Darunavir trough levels are lowered 48% and 43% with once- and twice-daily doses of darunavir, respectively. The average absolute darunavir trough levels in these studies were 30% to 50% of typical values. Paritaprevir AUC is increased 30% with once-daily darunavir and decreased 41% with twice-daily darunavir. The mechanism and clinical significance of the discrepant effect on paritaprevir is unclear. Thus, PrOD should not be used with ritonavir-boosted darunavir pending further data. PrOD can be given with atazanavir, but the separate ritonavir boosting tablet should be held during PrOD therapy and atazanavir should be administered at the same time as the fixed-dose combination of ritonavir-boosted paritaprevir and ombitasvir. Paritaprevir levels are increased 1.5- to 3-fold with atazanavir, but no dose adjustment of paritaprevir is recommended. ([Khatri, 2014a](#)) Inhibition of OATP1B1 by PrOD increases indirect bilirubin concentrations, and this effect may be attenuated in individuals taking atazanavir. ([Eron, 2014](#))

Twenty-eight HIV/HCV-coinfected subjects already taking ritonavir-boosted atazanavir (with ritonavir coming from the HCV regimen during the time of coadministration) were treated with a regimen of PrOD and RBV as part of the TURQUOISE-1 study. ([Sulkowski, 2015](#))

Simeprevir

Simeprevir is metabolized primarily by CYP3A4 and is therefore susceptible to drug interactions with inhibitors and inducers of this enzyme. Simeprevir is also an inhibitor of OATP1B1 and P-gp. Drug interaction studies with antiretroviral drugs in HIV-uninfected volunteers suggested no substantial interactions with tenofovir, rilpivirine, or raltegravir; however, simeprevir concentrations were
substantially decreased when dosed with efavirenz and substantially increased when dosed with ritonavir-boosted darunavir. Use with efavirenz, etravirine, cobicistat, or boosted HIV protease inhibitors is not recommended. (Kiser, 2013 [43])

<table>
<thead>
<tr>
<th>Drug Interactions Between Direct-Acting Antivirals and Antiretroviral Drugs</th>
<th>Simeprevir</th>
<th>Sofosbuvir</th>
<th>Ledipasvir</th>
<th>Daclatasvir</th>
<th>Paritaprevir, ritonavir, ombitasvir plus dasabuvir (PrOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritonavir-boosted atazanavir</td>
<td>No data</td>
<td>No data</td>
<td>Ledipasvir ↑; atazanavir ↑<sup>a</sup></td>
<td>Daclatasvir ↑<sup>b</sup></td>
<td>Paritaprevir ↑; atazanavir ↑</td>
</tr>
<tr>
<td>Ritonavir-boosted darunavir</td>
<td>Simeprevir ↑; dasabuvir ↔</td>
<td>Sofosbuvir ↑; dasabuvir ↔</td>
<td>Ledipasvir ↑; dasabuvir ↔<sup>a</sup></td>
<td>Daclatasvir ↑; dasabuvir ↔</td>
<td>Paritaprevir ↓↑; dasabuvir ↓</td>
</tr>
<tr>
<td>Ritonavir-boosted lopinavir</td>
<td>No data</td>
<td>No data</td>
<td>No data<sup>a</sup></td>
<td>Daclatasvir ↑; lopinavir ↔</td>
<td>Paritaprevir ↑; lopinavir ↔</td>
</tr>
<tr>
<td>Ritonavir-boosted tipranavir</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>Simeprevir ↓; efavirenz ↔</td>
<td>Sofosbuvir ↔; efavirenz ↔</td>
<td>Ledipasvir ↓; efavirenz ↓<sup>a</sup></td>
<td>Daclatasvir ↓<sup>b</sup></td>
<td>No pharmacokinetic data<sup>c</sup></td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>Simeprevir ↔; rilpivirine ↔</td>
<td>Sofosbuvir ↔; rilpivirine ↔</td>
<td>Ledipasvir ↔; rilpivirine ↔</td>
<td>No data</td>
<td>Paritaprevir ↑; rilpivirine ↑</td>
</tr>
<tr>
<td>Etravirine</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>Daclatasvir ↓<sup>b</sup> No data</td>
</tr>
<tr>
<td>Raltegravir</td>
<td>Simeprevir ↔; raltegravir ↔</td>
<td>Sofosbuvir ↔; raltegravir ↔</td>
<td>Ledipasvir ↔; raltegravir ↔</td>
<td>No data</td>
<td>PrOD ↔↑; raltegravir ↑</td>
</tr>
<tr>
<td>Cobicistat-boosted elvitegravir</td>
<td>No data</td>
<td>Cobicistat ↑<sup>a</sup>; sofosbuvir ↑</td>
<td>Cobicistat ↑; ledipasvir ↑<sup>a</sup></td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>No data</td>
<td>No data</td>
<td>Ledipasvir ↔; dolutegravir ↔</td>
<td>Daclatasvir ↔; dolutegravir ↑</td>
<td>Paritaprevir ↓, dolutegravir ↑</td>
</tr>
<tr>
<td>Maraviroc</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate</td>
<td>Simeprevir ↔; tenofovir disoproxil fumarate ↔</td>
<td>Sofosbuvir ↔; tenofovir disoproxil fumarate ↔</td>
<td>Ledipasvir ↔; tenofovir disoproxil fumarate ↑</td>
<td>Daclatasvir ↔; tenofovir disoproxil fumarate ↔</td>
<td>PrOD ↔; tenofovir disoproxil fumarate ↔</td>
</tr>
</tbody>
</table>

^aOnly problematic when administered with tenofovir disoproxil fumarate; tenofovir levels are increased.

^bDecrease daclatasvir dose to 30 mg once daily with atazanavir; increase daclatasvir dose to 90 mg once daily with efavirenz or etravirine.

^cPrOD administered with efavirenz led to premature study discontinuation owing to toxic
effects.

Data compiled largely from (Ouwerker-Mahadaven, 2012b [44]); (Kirby, 2012 [45]); (Gilead, 2014 [46]); (German, 2014 [31]); (German, 2015 [33]); (Garrison, 2015 [32]); (Bifano, 2013 [23]); (Eley, 2014 [47]); (Song, 2015 [25]); (Khatri, 2014 [48]); (ombitasvir/paritaprevir/ritonavir package insert); (Khatri, 2015 [39]).

RBV

RBV has the potential for dangerous drug interactions with didanosine resulting in mitochondrial toxicity with hepatomegaly and steatosis, pancreatitis, and lactic acidosis; thus, concomitant administration of these 2 drugs is contraindicated. (Fleischer, 2004 [49]) The combined use of RBV and zidovudine has been reported to increase the rates of anemia and the need for RBV dose reduction; thus, zidovudine is not recommended for use with RBV. (Alvarez, 2006 [50])

Recommended regimens for HIV/HCV-coinfected individuals.

HIV/HCV-coinfected persons should be treated and retreated the same as persons without HIV infection, after recognizing and managing interactions with antiretroviral medications (see Initial Treatment of HCV Infection [51] and Retreatment of Persons in Whom Prior Therapy Has Failed [52] sections).

Rating: Class I, Level B

Daily daclatasvir (refer above for dose) and sofosbuvir (400 mg), with or without RBV (refer to Initial Treatment of HCV Infection [51] and Retreatment of Persons in Whom Prior Therapy Has Failed [52] sections for duration) is recommended when antiretroviral regimen changes cannot be made to accommodate alternative HCV direct-acting antivirals.

Rating: Class I, Level B

Although fewer HIV/HCV-coinfected patients than HCV-monoinfected patients have been treated in trials of DAAs, efficacy rates thus far have been remarkably similar between the groups. (Sulkowski, 2013a [53]); (Sulkowski, 2013d [54]); (Sulkowski, 2014 [55]); (Dieterich, 2014b [56]); (Rodriguez-Torres, 2013 [57]); (Osinusi, 2015 [58]); (Sulkowski, 2015 [42]); (Dieterich, 2015 [59]); (Naggie, 2015 [60]); (Wyles, 2015 [26]) Thus, results from HCV monoinfection studies largely justify the recommendations for HIV/HCV coinfection (discussed in the Initial Treatment [51] and Retreatment [52] sections). Discussion specific to studies of HIV/HCV coinfection is included here.

The safety and efficacy of 12 weeks of ledipasvir/sofosbuvir was evaluated in the phase II ERADICATE study, which treated 50 HIV/HCV-coinfected, HCV genotype 1-infected, treatment-naive patients without cirrhosis from an urban population in a single-center, open-label clinical trial. (Osinusi, 2015 [58]) Thirteen
patients were not receiving antiretroviral therapy and 37 patients were on protocol-allowed medications (tenofovir, emtricitabine, rilpivirine, raltegravir, and efavirenz). Although the inclusion criteria for patients receiving antiretroviral therapy allowed CD4+ T cell counts of greater than 100/µL, the median CD4+ T cell count was 576/µL. Overall, 98% achieved sustained virologic response at 12 weeks (SVR12; 13/13 in treatment-naive arm and 36/37 in treatment-experienced arm). There were no deaths, discontinuations, or clinically significant serious adverse events. Renal function was monitored frequently during this trial and after administration of study drugs using a battery of tests (serum creatinine, estimated GFR, CrCl, urinary beta-2 microglobulin, proteinuria, and glycosuria). No clinically significant changes in these parameters or renal toxicity were observed. A larger study, ION-4, reported similar outcomes with ledipasvir/sofosbuvir. (Naggie, 2015 [60]) A total of 335 HCV treatment-naive and -experienced HIV/HCV-coinfected patients were enrolled in the study and received ledipasvir/sofosbuvir once daily for 12 weeks. Patients received tenofovir disoproxil fumarate and emtricitabine with raltegravir (44%), efavirenz (48%), or rilpivirine (9%). HCV genotypes included were 1a (75%), 1b (23%), and 4 (2%); 20% of patients had cirrhosis, 34% were black, and 55% had not responded to prior HCV treatment. Overall, the SVR12 rate was 96% (321/335); 2 patients had on-treatment virologic failure judged to be a result of nonadherence, 10 had virologic relapse after discontinuing treatment, 1 died from endocarditis associated with injection drug use, and 1 was lost to follow-up. SVR12 rate was 94% (63/67) among patients with cirrhosis and 97% (179/185) among treatment-experienced patients. No patients discontinued the study drug because of an adverse event. Although all patients had GFRs above 60 mL/min at study entry, drug interaction studies suggested that some patients would have elevated tenofovir levels of disoproxil fumarate. There were 4 patients in whom serum creatinine level rose to 0.4 mg/dL or higher: 2 remained on tenofovir, 1 had the tenofovir dose reduced, and the other stopped taking tenofovir. Neither study reported clinically significant changes in CD4+ cell counts or HIV RNA levels in the study subjects. Thus, these data suggest that 12 weeks of ledipasvir/sofosbuvir is a safe and effective regimen for HIV/HCV-coinfected patients with HCV genotype 1 taking select antiretroviral therapy. (Osinusi, 2015 [58]); (Naggie, 2015 [60]) There are no data regarding an 8-week duration of ledipasvir/sofosbuvir in HIV/HCV-coinfected patients. Therefore, a shortened treatment course for HIV-infected persons cannot be recommended at this time.

PrOD was FDA-approved for use in HCV genotypes 1a and 1b because of its efficacy and safety in treatment-naive patients [61] and PEG-IFN and RBV treatment–experienced [62] patients with and without cirrhosis. Available information about response rates with this regimen in HIV/HCV-coinfected patients comes from the first part of the phase II TURQUOISE-1 study. In this study, treatment-naive (n=42) and -experienced (n=21) patients were randomly assigned to receive either 12 weeks or 24 weeks of PrOD and weight-based RBV (100 mg [<75 kg] to 1200 mg [>75 kg]). Of the 63 study subjects, 12 had cirrhosis, 56 had HCV genotype 1a, and 7 had HCV genotype 1b. Two study-permitted antiretroviral regimens were chosen based on pharmacokinetic data from uninfected volunteers: 35 patients entered taking tenofovir disoproxil fumarate and emtricitabine with raltegravir and 28 patients entered taking tenofovir disoproxil fumarate and emtricitabine with ritonavir-boosted atazanavir (with the ritonavir coming from the HCV regimen during the time of coadministration). Of the 31 patients who received 12 weeks of PrOD and RBV, 29 (93.5%) achieved an SVR12, 1 relapsed, and 1 withdrew consent from study participation. Similarly, of the 32 subjects in the 24-week arm, 29 (90.6%) achieved an SVR12, 1 experienced viral breakthrough, and 2 had apparent HCV reinfection. No treatment-related serious adverse events occurred and no subjects discontinued treatment because of medication intolerance. (Sulkowski, 2015 [42])

The combination of simeprevir plus sofosbuvir with or without RBV has been studied in the phase II COSMOS trial in patients with HCV monoinfection. (Jacobson, 2013b [63]) This study is the main basis for the recommendation supporting the use of this all-oral combination for HCV genotype 1a or 1b.
monoinfection. Simeprevir plus sofosbuvir has been used anecdotally in patients with HIV/HCV coinfection, with a recent report of achieving an SVR in 11 (92%) of 12 patients. (Del Bello, 2014 [64]) Despite the dearth of study data, this regimen may be considered for the treatment of HCV genotype 1 infection in patients with HIV infection who are receiving antiretroviral therapy that may be coadministered with simeprevir and sofosbuvir.

Similarly, few data exist for the combination of sofosbuvir plus simeprevir for the retreatment of HCV infection in HIV/HCV-coinfected patients. However, preliminary results obtained for HCV-monoinfected patients, including those with prior treatment failure and advanced fibrosis, support the expectation that this regimen will be highly effective in HIV/HCV-coinfected patients receiving compatible antiretroviral therapy as described above (see Retreatment [65] of HCV-monoinfected patients). (Jacobson, 2013b [63])

The combined analysis of the phase III PHOTON-1 and PHOTON-2 studies was presented. These trials treated HIV/HCV-coinfected patients with HCV genotype 1 (treatment-naive), 2, 3, or 4 (treatment-naive and -experienced) with 400 mg of sofosbuvir and weight-based RBV. Treatment-naive patients with HCV genotype 1 (n=226) or 4 (n=31) received 24 weeks of treatment. Treatment-naive patients with HCV genotype 2 (n=45) received 12 weeks of treatment. Treatment-naive patients with HCV genotype 3 received 12 weeks (n=42) or 24 weeks (n=57) of treatment. All treatment-experienced patients with HCV genotype 2, 3, or 4 (n=30, n=66, and n=31, respectively) were treated for 24 weeks. Patients with compensated cirrhosis (15%) were included. Antiretroviral regimens allowed included combinations of tenofovir disoproxil fumarate and emtricitabine with efavirenz, raltegravir, ritonavir-boosted atazanavir, ritonavir-boosted darunavir, or rilpivirine. High SVR12 rates were observed for all HCV genotypes (81% for genotype 1, 89% for genotype 2, 84% each for genotypes 3 and 4). SVR12 rates were lower for patients with cirrhosis with HCV genotype 1a and treatment-experienced patients with HCV genotype 3 who were treated for 24 weeks (65% vs 85%, respectively, and 95% vs 79%, respectively) but not for others. Sofosbuvir and RBV were well tolerated. Of note, 6 patients had transient breakthrough of HIV RNA, although none required change of antiretroviral drugs. Sofosbuvir and RBV can be an effective therapy for HIV/HCV-coinfected patients, particularly for those with HCV genotypes 2 or 4. (Rockstroh, 2014 [66]); (Sulkowski, 2014 [55]); (Molina, 2015 [67])

ALLY-2 is a phase III clinical trial that evaluated the 12-week regimen of daclatasvir with sofosbuvir in patients with HIV/HCV coinfection and HCV genotypes 1 to 4. (Wyles, 2015 [26]) This open-label clinical trial enrolled both treatment-naive (n=151) and -experienced (n=52) HIV/HCV-coinfected patients. Treatment-naive patients were randomly assigned (2:1), with stratification by cirrhosis status and HCV genotype, to receive 12 weeks or 8 weeks of once-daily daclatasvir 60 mg (dose adjusted based on antiretroviral regimen) and sofosbuvir 400 mg; treatment-experienced patients received daclatasvir and sofosbuvir for 12 weeks. Genotype distribution was 83%, 9%, 6%, and 2% of patients, respectively, for genotypes 1, 2, 3, and 4 HCV infection, and 14% of all participants had cirrhosis. Antiretroviral drugs allowed were ritonavir-boosted darunavir, atazanavir, or lopinavir, efavirenz, nevirapine, rilpivirine, raltegravir, and dolutegravir. The combination of daclatasvir and sofosbuvir once daily for 12 weeks achieved an SVR12 in 97% of HIV/HCV-coinfected patients with HCV genotype 1, 2, 3, or 4, and was safe and well tolerated. Ninety-seven percent of treatment-naive patients and 98% of -experienced patients achieved an SVR. However, among patients who received 8 weeks of combination therapy, only 76% of patients achieved an SVR. Factors associated with relapse in this patient group included high baseline HCV RNA level (>2 million IU/mL; 69%), concomitant use of a boosted darunavir–based antiretroviral regimen with 30 mg of daclatasvir (67%), and the presence of cirrhosis (60%). More data are needed in certain subgroups (eg, patients with HCV genotype 3 and cirrhosis who had lower response rates to this regimen and patients without HIV infection). (Nelson, 2014 [68])
Many HIV/HCV-coinfected patients are on antiretroviral regimens with drug interactions that absolutely preclude otherwise recommended DAA regimens. Switching an optimized antiretroviral regimen carries risks, including adverse effects and viral breakthrough. (Eron, 2010) Viral breakthrough is a particular concern for those with substantial antiretroviral experience or known resistance to antiretroviral drugs. For these situations, given the compatibility of daclatasvir and sofosbuvir with nearly all antiretroviral regimens (see pharmacologic considerations above), daclatasvir and sofosbuvir is recommended in order to avoid unnecessary switching of effective HIV antiretroviral regimens. When the optimal combination of DAAs and antiretroviral drugs is unclear, expert consultation is recommended.

Data are lacking regarding the use of sofosbuvir among HIV/HCV-coinfected patients with HCV genotype 5 or 6. Given the evidence of the safety and efficacy of sofosbuvir-based regimens for HIV/HCV-coinfected individuals infected with other HCV genotypes and the efficacy data from HCV-monoinfected individuals with these genotypes, the recommended regimens for treatment-naive and -experienced patients with HIV/HCV coinfection and these genotypes are the same as those for HCV-monoinfected patients.

In general, few HIV/HCV-coinfected patients with cirrhosis have been included in clinical trials of DAAs, and no data are available regarding HIV/HCV-coinfected patients with renal insufficiency or who have undergone solid organ transplantation. Despite a lack of data, it is highly likely that response rates are similar to those of HCV-monoinfected patients, as no study thus far in the DAA era has showed a lower efficacy for HIV/HCV-coinfected patients. Therefore, the respective guidance from these sections should be followed if treatment is otherwise warranted, with consideration of drug interactions.

No data currently exist to guide recommendations for the retreatment of HIV/HCV-coinfected patients or for the retreatment of simeprevir- or sofosbuvir-experienced individuals. When treatment is necessary, guidelines for HCV-monoinfected individuals are recommended.

The following regimens are NOT recommended for treatment-naive or -experienced HIV/HCV-coinfected patients.

- Treatment courses shorter than 12 weeks, such as the use of 8 weeks of ledipasvir/sofosbuvir: Rating: Class IIb, Level C
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral: Rating: Class III, Level A
- PEG-IFN and RBV with or without simeprevir, telaprevir, or boceprevir for 24 weeks to 48 weeks: Rating: Class IIb, Level A

Owing to its prolonged treatment course, adverse effects, and poor response rates, PEG-IFN with RBV is no longer recommended for the treatment of patients with any HCV genotype who are coinfected with HIV. Telaprevir, boceprevir, or simeprevir combined with PEG-IFN and RBV have similar reported efficacy and safety in patients with HIV/HCV coinfection and HCV genotype 1 to that for patients with HCV monoinfection and genotype 1, but require 24 weeks to 48 weeks of HCV treatment. (Sulkowski, 2013a; Sulkowski, 2013d; Dieterich, 2014b) Telaprevir, boceprevir, and simeprevir are each substrates and, to varying degrees, inhibitors of CYP3A4 and thus have substantial drug interactions with antiretroviral drugs. (van Heeswijk, 2011a; van Heeswijk, 2011b; Kakuda, 2012; Johnson,
Owing to the adverse effect profile, a prolonged required course of PEG-IFN and RBV, lower efficacy than other recommended regimens, and substantial drug interactions, these regimens are no longer recommended for HIV/HCV-coinfected patients.

Because of their limited activity in vitro and in vivo against HCV genotypes 2 and 3, boceprevir, telaprevir, and simeprevir should not be used as therapy for HIV/HCV-coinfected patients with HCV genotype 2 or 3 infection. Boceprevir and telaprevir also have limited activity against HCV genotype 4 and should not be used as therapy for HIV/HCV-coinfected patients with HCV genotype 4 infection. There are currently insufficient data to support a recommendation for the use of simeprevir for HCV genotype 4 infection in HIV/HCV-coinfected patients.

Mixed Genotypes

Rarely, genotyping assays may indicate the presence of a mixed infection (eg, genotypes 1a and 2). Treatment data for mixed genotypes with DAAs are sparse, and awaiting availability of a pangenotypic regimen may be considered. Until then, when treatment is necessary, the choice of antiviral combination and duration of treatment should maximize efficacy against each genotype represented in the assay. When the correct combination or duration is unclear, expert consultation should be sought.

Changes made on August 7, 2015.
Unique Patient Populations: HIV/HCV Coinfection Box. Summary of Recommendations for HIV/HCV-Coinfected Patients Who are Being Treated for HCV, by Genotype

Recommendations related to HCV medication interactions with HIV antiretroviral medications.

Antiretroviral drug switches, when needed, should be done in collaboration with the HIV practitioner. For HIV antiretroviral and HCV direct-acting antiviral combinations not addressed below, expert consultation is recommended.

Rating: Class I, Level A

Daclatasvir:
- Daclatasvir requires dose adjustment with ritonavir-boosted atazanavir (a decrease to 30 mg daily) and efavirenz or etravirine (an increase to 90 mg daily).
Rating: Class IIa, Level B

Fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg):
- Because ledipasvir increases tenofovir levels, when given as tenofovir disoproxil fumarate, concomitant use mandates consideration of creatinine clearance (CrCl) rate and should be avoided in those with CrCl below 60 mL/min. Because potentiation of this effect occurs when tenofovir is used with ritonavir-boosted HIV protease inhibitors, ledipasvir should be avoided with this combination (pending further data) unless antiretroviral regimen cannot be changed and the urgency of treatment is high.
Rating: Class IIa, Level C

For combinations expected to increase tenofovir levels, baseline and
ongoing assessment for tenofovir nephrotoxicity is recommended.

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (paritaprevir/ritonavir/ombitasvir plus dasabuvir or PrOD):

- **Paritaprevir/ritonavir/ombitasvir plus dasabuvir** should be used with antiretroviral drugs with which they do not have substantial interactions: atazanavir, dolutegravir, emtricitabine, enfuvirtide, lamivudine, raltegravir, and tenofovir.
- The dose of ritonavir used for boosting of HIV protease inhibitors may need to be adjusted (or held) when administered with paritaprevir/ritonavir/ombitasvir plus dasabuvir and then restored when HCV treatment is completed. The HIV protease inhibitor should be administered at the same time as the fixed-dose HCV combination.

Rating: Class IIa, Level C

Simeprevir:

- **Simeprevir** should be used with antiretroviral drugs with which it does not have clinically significant interactions: abacavir, emtricitabine, enfuvirtide, lamivudine, maraviroc, raltegravir (and probably dolutegravir), rilpivirine, and tenofovir.

Rating: Class IIa, Level B

The following are NOT recommended or should not be used.

Antiretroviral treatment interruption to allow HCV therapy is NOT recommended.

Rating: Class III, Level A

Ledipasvir/sofosbuvir should NOT be used with cobicistat when given with tenofovir disoproxil fumarate.

Rating: Class III, Level C

Sofosbuvir or ledipasvir/sofosbuvir should NOT be used with tipranavir.

Rating: Class III, Level B

Paritaprevir/ritonavir/ombitasvir plus dasabuvir should NOT be used with darunavir, efavirenz, ritonavir-boosted lopinavir, or rilpivirine.

Rating: Class III, Level B

Paritaprevir/ritonavir/ombitasvir with or without dasabuvir should NOT be used in HIV/HCV-coinfected individuals who are not taking antiretroviral
therapy.

Rating: Class III, Level B

RBV should NOT be used with didanosine, stavudine, or zidovudine.

Rating: Class III, Level B

Simeprevir should NOT be used with cobicistat, efavirenz, etravirine, nevirapine, or any HIV protease inhibitor.

Rating: Class III, Level B

Recommended regimens for HIV/HCV-coinfected individuals.

HIV/HCV-coinfected persons should be treated and retreated the same as persons without HIV infection, after recognizing and managing interactions with antiretroviral medications (see Initial Treatment of HCV Infection [1] and Retreatment of Persons in Whom Prior Therapy Has Failed [2] sections).

Rating: Class I, Level B

Daily daclatasvir (refer above for dose) and sofosbuvir (400 mg), with or without RBV (refer to Initial Treatment of HCV Infection [1] and Retreatment of Persons in Whom Prior Therapy Has Failed [2] sections for duration) is recommended when antiretroviral regimen changes cannot be made to accommodate alternative HCV direct-acting antivirals.

Rating: Class I, Level B

The following regimens are NOT recommended for treatment-naive or -experienced HIV/HCV-coinfected patients.

- Treatment courses shorter than 12 weeks, such as the use of 8 weeks of ledipasvir/sofosbuvir. **Rating:** Class Iib, Level C
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A
- PEG-IFN and RBV with or without simeprevir, telaprevir, or boceprevir for 24 weeks to 48 weeks. **Rating:** Class Iib, Level A

Changes made on August 7, 2015.
UNIQUE PATIENT POPULATIONS: PATIENTS WITH DECOMPENSATED CIRRHOSIS

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

The summary of recommendations for patients with decompensated cirrhosis is in the BOX [2]. (Recommendations for patients with decompensated cirrhosis who have HCV reinfection in the allograft post-liver transplantation are presented here [3].)

Decompensated Cirrhosis: Genotype 1 and 4 HCV Infection

Patients with HCV genotype 1 or 4 infection with decompensated cirrhosis [4] (moderate or severe hepatic impairment; Child Turcotte Pugh [CTP] class B or C [5]) should be referred to a medical practitioner with expertise in that condition (ideally in a liver transplant center).

Rating: Class I, Level C

Recommended regimens for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [4] (moderate or severe hepatic impairment; CTP class B or C [5]) who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 with decompensated cirrhosis [4].

Rating: Class II, Level A
Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 with decompensated cirrhosis [4].

Rating: Class IIb, Level C

Recommended regimen for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [4] who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks is recommended for patients with decompensated cirrhosis [4] who are RBV intolerant or ineligible.

Rating: Class IIb, Level C

Recommended regimen patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [4] in whom prior sofosbuvir-based treatment has failed.

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 24 weeks is recommended for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [4] in whom prior sofosbuvir-based treatment has failed.

Rating: Class IIb, Level C

Daclatasvir has been used in a number of oral regimens for patients with compensated cirrhosis. In the UNITY-2 trial (Muir, 2015 [6]) a daily fixed-dose combination of daclatasvir (30 mg daily), the investigational NS3 protease inhibitor asunaprevir (200 mg daily), and the investigational nonnucleoside NS5B inhibitor beclabuvir (75 mg daily) was administered with or without RBV to patients with cirrhosis infected with HCV genotype 1. One hundred and twelve treatment-naive and 90 treatment-experienced patients were included in the trial; the rates of sustained virologic response at 12 weeks (SVR12) were 98% and 93%, respectively, when RBV was included and 93% and 89%, respectively, when it was not.

In the phase III ALLY-1 study (Poordad, 2015 [7]), daclatasvir (60 mg daily) was administered in combination with daily sofosbuvir (400 mg) and low initial dose of RBV (600 mg) for 12 weeks to
treatment-naive and -experienced patients who predominantly had HCV genotype 1 infection, in 2 specific populations: those with advanced cirrhosis (Child Turcotte Pugh [CTP] class B and C; n=60) and those with recurrent HCV infection posttransplant (n=53). SVR12 rate was 83% among those with advanced cirrhosis and 94% among those with recurrent HCV infection posttransplant. In the population with advanced cirrhosis, SVR12 rate was 76% among patients with HCV genotype 1a and 100% among patients with HCV genotype 1b. In the population with advanced cirrhosis, SVR12 rate was 94% among patients with CTP class B cirrhosis and 56% among patients with CTP class C cirrhosis. Among subjects with HCV genotype 3, SVR12 rates were 83% and 91%, respectively, in those with advanced cirrhosis and recurrent HCV infection posttransplant.

Fontana and colleagues (Fontana, 2015 [8]) reported on the use of daclatasvir-containing regimens with either sofosbuvir or simeprevir in 64 liver transplant recipients with HCV genotype 1 infection. SVR12 rate was 84% overall, 87% in the group that received daclatasvir and sofosbuvir, and 80% in the group that received daclatasvir and simeprevir. Herzer and colleagues (Herzer, 2015 [9]) described 6 liver transplant recipients with recurrent HCV infection, 4 (67%) of whom achieved SVR with a regimen of daclatasvir, simeprevir, and RBV. Overall, daclatasvir-containing regimens appear to be well tolerated, with anemia noted when RBV was used. Cyclosporine and tacrolimus increase daclatasvir area under the curve by 40% and 5%, respectively; these changes are not clinically significant. Daclatasvir does not cause clinically meaningful changes in calcineurin inhibitor, mammalian target of rapamycin (mTOR) inhibitor, steroid, or mycophenolate levels.

The SOLAR-2 study was a multicenter randomized controlled trial of 108 patients with HCV genotypes 1 and 4 who had decompensated cirrhosis. Study participants who were treatment-naive or -experienced, with CTP class B cirrhosis (score 7 to 9) or CTP class C cirrhosis (score 10 to 12), were randomly assigned to receive daily fixed-dose combination ledipasvir (90 mg) and sofosbuvir (400 mg) (hereafter ledipasvir/sofosbuvir) and RBV (initial dose of 600 mg, increased as tolerated) for 12 weeks or 24 weeks. All participants had a hemoglobin level greater than 10 g/dL and a creatinine clearance (CrCl) rate greater than 40 mL/min. (Flamm, 2014 [10])

Excluding 6 patients who had received a transplant, sustained virologic response (SVR) was achieved in 87% of those given the 12-week treatment course and 89% of those given the 24-week treatment course. Posttherapy virologic relapse occurred in 8% and 4% of the 12- and 24-week groups, respectively. Total bilirubin and serum albumin levels improved substantially at week 4 posttherapy compared with baseline in both treatment groups. Baseline CTP and Model for End-Stage Liver Disease (MELD) scores improved in more than 50% of the treated patients, but some patients did have worsening hepatic function. During the course of the study, 5 (5%) patients died from various causes but none of the deaths were attributed to antiviral therapy. Grade 3 or 4 adverse events were more common in the 24-week arm (34%) than in the 12-week arm (15%). These results indicate that a 12-week course of ledipasvir/sofosbuvir and RBV (initial dose of 600 mg, increased as tolerated) is an appropriate regimen for patients with decompensated cirrhosis who are infected with HCV genotype 1 or 4. Such therapy may lead to objective improvements in hepatic function and reduce the likelihood of recurrent HCV infection after subsequent transplantation.

Most patients who started RBV at 600 mg per day did not receive higher doses. As of December 2014, there are no data from studies of ledipasvir/sofosbuvir without RBV in patients with decompensated cirrhosis. However, a pilot study of 14 patients with compensated cirrhosis and HCV genotype 1 infection in whom prior sofosbuvir-based therapy had failed demonstrated that ledipasvir/sofosbuvir for 12 weeks was associated with a 100% SVR rate. (Osinusi, 2014b [11]) In addition, preliminary results of a study of
51 HCV genotype 1-infected patients in whom prior sofosbuvir-based therapy had failed demonstrated that a 12-week course of ledipasvir/sofosbuvir and low initial dose of RBV (600 mg, increased as tolerated) led to a 98% rate of SVR at 4 weeks (SVR4). (Wyles, 2015b [12])

A multicenter, double-blind study from France reported on the use of daily ledipasvir/sofosbuvir for 24 weeks compared with daily ledipasvir/sofosbuvir and RBV for 12 weeks, with a 12-week placebo phase, in 154 patients with compensated cirrhosis and HCV genotype 1 infection in whom prior PEG-IFN and RBV treatment had failed (for most, treatment with PEG-IFN, RBV, and a protease inhibitor had also failed). (Bourliere, 2014a [13]) The mean MELD score was 7 (range, 6-16), 26% of patients had varices, and 13% had low serum albumin levels. The SVR12 rates were 96% with the 12-week regimen and 97% with the 24-week regimen. The most common adverse events were asthenia, headache, and pruritus, but the frequency of severe adverse events and the need for early drug discontinuation were low in both treatment groups. In light of these results, it is reasonable to consider daily ledipasvir/sofosbuvir and RBV for 12 weeks in patients with decompensated cirrhosis in whom prior sofosbuvir-based treatment has failed.

Decompensated Cirrhosis: Genotype 2 and 3 HCV Infection

Patients with HCV genotype 2 or 3 infection with decompensated cirrhosis [4] (moderate or severe hepatic impairment; Child Turcotte Pugh [4]CTP class B or C [4]) should be referred to a medical practitioner with expertise in that condition (ideally in a liver transplant center).

Rating: Class I, Level C

Recommended regimens for patients with HCV genotype 2 or 3 infection who have decompensated cirrhosis [4] (moderate or severe hepatic impairment; CTP class B or C [5]) and who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 2 or 3 infection who have decompensated cirrhosis [4] and who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Rating: Class II, Level A

Daily sofosbuvir (400 mg) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) (with consideration of the patient’s creatinine clearance rate and hemoglobin level) for up to 48 weeks is recommended for patients with HCV genotype 2 or 3 infection who have decompensated
Daclatasvir with sofosbuvir for 12 weeks was approved by the FDA for the treatment of HCV genotype 3 infection in patients without and with cirrhosis. Although daclatasvir with sofosbuvir was not approved for the treatment of HCV genotype 2 infection, daclatasvir maintains adequate activity against HCV genotype 2 despite a 50% effective concentration (EC_{50}) that increases by several logs in the presence of the prevalent M31 polymorphism. (Wang, 2014 [14]) In fact, daclatasvir with sofosbuvir was associated with high rates of SVR in treatment-naive patients with HCV genotype 2 infection with both 12 weeks and 24 weeks of therapy. (Wyles, 2015 [15]; Sulkowski, 2014 [16]) It is unclear if there is a subgroup of HCV genotype 2–infected patients who would benefit from extending treatment to 24 weeks. For patients who require treatment but cannot tolerate RBV, an alternative regimen of daclatasvir with sofosbuvir for 12 weeks is recommended and consideration of extending treatment to 24 weeks for patients with poor baseline characteristics (cirrhosis) is reasonable. Relevant data supporting daclatasvir, sofosbuvir, and RBV from the Ally-1 trial are described here.

In one study, 61 patients with HCV infection and hepatocellular carcinoma (HCC) who met the Milan criteria for liver transplantation were treated with sofosbuvir plus RBV for up to 48 weeks. (Curry, 2014 [17]) At the time of treatment initiation, the median MELD score was 8 (range, 6-14). Seventeen patients had CTP scores of 7 or 8 (CTP class B cirrhosis), 45 (73%) patients had HCV genotype 1, 8 (13%) had HCV genotype 2, and 7 (11%) had HCV genotype 3. Forty-six patients underwent liver transplantation. At 12 weeks posttransplant, 30 of the 43 patients (70%) had undetectable HCV RNA levels which is consistent with prevention of recurrent HCV infection. Ten patients experienced recurrent HCV infection, 9 of whom had undetectable HCV RNA levels for a duration of less than 30 days pretransplant.

The most common adverse effects were fatigue (38%), anemia (21%), and headache (23%); adverse effects led to treatment discontinuation for 2 patients (3%), and 12 patients (20%) required a dose reduction of RBV. The only independent predictor of posttransplant SVR12 was the number of days of undetectable HCV RNA level pretransplant. In addition, 10 of the 11 (91%) subjects with HCV genotype 2 or 3 achieved SVR12, and only 19 of the 29 (65%) patients with HCV genotype 1 achieved SVR12. These data suggest that sofosbuvir and RBV can be given to liver transplant candidates with HCC and mildly decompensated cirrhosis, but that more than 30 days of undetectable HCV RNA level are required to achieve SVR12 posttransplant.

In a sofosbuvir compassionate-use program for patients with severe recurrent HCV infection following liver transplantation who were predicted to have a less than 6-month survival rate, (Forns, 2013b [18]) 78 patients were treated; 44 patients were treated with sofosbuvir plus RBV, and 32 patients also received PEG-IFN. At treatment initiation, the median MELD score was 16 (range, 6-43), and fibrosing cholestatic hepatitis was documented in 20 patients. After week 12 of treatment, 91% of patients treated with sofosbuvir plus RBV and 75% of those treated with the addition of PEG-IFN achieved HCV RNA levels below the lower limit of quantification. Of 27 patients evaluated at 12 weeks posttreatment, 15 (56%) of patients achieved SVR. Overall, 75% of patients had improved or stable clinical liver disease, including improved hyperbilirubinemia and coagulopathy and a decreased MELD score. In this very sick population, 8 patients died and most deaths were caused by liver disease progression.
Preliminary data from the ELECTRON-2 study of daily ledipasvir/sofosbuvir with or without weight-based RBV (n=26 and n=25, respectively) in previously untreated patients with HCV genotype 3 without cirrhosis have been presented. (Gane, 2014 [19]) In this study, the SVR12 rate was 100% in the group that received ledipasvir/sofosbuvir with RBV compared with only 64% in the group that received ledipasvir/sofosbuvir alone. Although there are currently no data regarding the use of ledipasvir/sofosbuvir with RBV in patients with decompensated cirrhosis and HCV genotype 3, this regimen may be of value if proven safe and effective.

The following regimens are NOT recommended for patients with decompensated cirrhosis (moderate or severe hepatic impairment; Child Turcotte Pugh [5] class B or C [5]).

- Any IFN-based therapy
 Rating: Class III, Level A
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral
 Rating: Class III, Level A
- Telaprevir-, boceprevir-, or simeprevir-based regimens
- Paritaprevir-, ombitasvir-, or dasabuvir-based regimens
 Rating: Class III, Level A

IFN should not be given to patients with decompensated cirrhosis (moderate or severe hepatic impairment; CTP class B or C [5]) because of the potential for worsening hepatic decompensation. Neither telaprevir nor boceprevir should be used for this population because they must be coadministered with PEG-IFN and RBV. Very minimal data exist for the use of simeprevir in patients with decompensated cirrhosis. Until additional data become available, simeprevir should not be used in patients with decompensated cirrhosis.

Mixed Genotypes

Rarely, genotyping assays may indicate the presence of a mixed infection (eg, genotypes 1a and 2). Treatment data for mixed genotypes with direct-acting antivirals are sparse. Awaiting availability of a pangenotypic regimen may be considered. Until then, when treatment is necessary, the choice of antiviral combination and duration of treatment should maximize efficacy against each genotype represented in the assay. When the correct combination or duration is unclear, expert consultation should be sought.

Changes made on August 7, 2015.
Patients with HCV genotype 1 or 4 infection with decompensated cirrhosis [1] (moderate or severe hepatic impairment; Child Turcotte Pugh [CTP] class B or C [2]) should be referred to a medical practitioner with expertise in that condition (ideally in a liver transplant center).

Rating: Class I, Level C

Recommended regimens for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [1] (moderate or severe hepatic impairment; CTP class B or C [2]) who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 with decompensated cirrhosis [1].

Rating: Class II, Level A

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 with decompensated cirrhosis [1].

Rating: Class IIb, Level C
Recommended regimen for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [1] who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg) and sofosbuvir (400 mg) for 24 weeks is recommended for patients with decompensated cirrhosis [1] who are RBV intolerant or ineligible.

Rating: Class IIb, Level C

Recommended regimen patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [1] in whom prior sofosbuvir-based treatment has failed.

Daily fixed-dose combination ledipasvir (90 mg)/sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 24 weeks is recommended for patients with genotype 1 or 4 HCV infection with decompensated cirrhosis [1] in whom prior sofosbuvir-based treatment has failed.

Rating: Class IIb, Level C

Patients with HCV genotype 2 or 3 infection with decompensated cirrhosis [1] (moderate or severe hepatic impairment; Child Turcotte Pugh [1] CTP class B or C [1]) should be referred to a medical practitioner with expertise in that condition (ideally in a liver transplant center).

Rating: Class I, Level C

Recommended regimens for patients with HCV genotype 2 or 3 infection who have decompensated cirrhosis [1] (moderate or severe hepatic impairment; CTP class B or C [2]) and who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 2 or 3 infection who have decompensated cirrhosis [1] and who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Rating: Class II, Level A

Daily sofosbuvir (400 mg) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) (with consideration of the patient’s creatinine...
clearance rate and hemoglobin level) for up to 48 weeks is recommended for patients with HCV genotype 2 or 3 infection who have **decompensated cirrhosis** [1] and who may or may not be candidates for liver transplantation, including those with hepatocellular carcinoma.

Rating: Class IIb, Level B

*The following regimens are NOT recommended for patients with **decompensated cirrhosis** [1] (moderate or severe hepatic impairment; **Child Turcotte Pugh** [2] **class B or C** [2]).*

- **Any IFN-based therapy. Rating:** Class III, Level A
- **Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating:** Class III, Level A
- **Telaprevir-, boceprevir-, or simeprevir-based regimens**
- **Paritaprevir-, ombitasvir-, or dasabuvir-based regimens. Rating:** Class III, Level A

Changes made on August 7, 2015.
Home > Unique Patient Populations: Patients who Develop Recurrent HCV Infection Post-liver Transplantation

UNIQUE PATIENT POPULATIONS: PATIENTS WHO DEVELOP RECURRENT HCV INFECTION POST-LIVER TRANSPLANTATION

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

The summary of recommendations for patients who develop recurrent HCV infection post-liver transplantation is in the BOX [2].

Recommended regimens for treatment-naive and -experienced patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [3].

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class I, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with weight-based RBV (1000 mg [<75 kg] to 1200 mg [>75 kg]) for 12 weeks is recommended for patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class I, Level B

Recommended regimens for treatment-naive patients with HCV genotype 1 or 4 infection in the allograft and with compensated liver disease, who are RBV intolerant or ineligible.
Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 1 or 4 infection in the allograft and with compensated liver disease, who are RBV intolerant or ineligible.

Rating: Class IIb, Level C

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for treatment-naive patients with HCV genotype 1 or 4 infection in the allograft and with compensated liver disease, who are RBV intolerant or ineligible.

Rating: Class I, Level B

Alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with compensated cirrhosis [3].

Daily sofosbuvir (400 mg) plus simeprevir (150 mg) with or without weight-based RBV for 12 weeks is an alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class I, Level B

Recommended regimens for treatment-naive and -experienced patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [3].

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class II, Level A

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class IIb, Level C
Recommended regimen for treatment-naive and -experienced patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [3], who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [3], who are RBV intolerant or ineligible.

Rating: Class IIb, Level C

Recommended regimens for treatment-naive and -experienced patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [3]

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class II, Level A

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for treatment-naive and -experienced patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [3].

Rating: Class I, Level B

Recommended regimen for treatment-naive patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [3], who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for treatment-naive patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [3], who are RBV intolerant or ineligible.

Rating: Class IIb, Level C
Recommended regimen for treatment-naive and -experienced liver transplant recipients with decompensated cirrhosis [3] (Child Turcotte Pugh [CTP] class B or C [3]) who have HCV genotype 3 infection in the allograft.

Daily sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 24 weeks is recommended for liver transplant recipients with decompensated cirrhosis [3] (CTP class B or C [3]) who have HCV genotype 3 infection in the allograft.

Rating: Class I, Level B

Alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with early stage fibrosis (Metavir stage F0-F2).

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 24 weeks is an alternative regimen for patients with HCV genotype 1 infection in the allograft, who have early stage fibrosis (Metavir stage F0-F2).

Rating: Class I, Level B

In the phase III ALLY-1 study (Poordad, 2015 [4]), daclatasvir (60 mg daily) was administered in combination with daily sofosbuvir (400 mg) and RBV (initial dose, 600 mg) for 12 weeks to treatment-naive and -experienced patients who predominantly had HCV genotype 1 infection, in 2 specific populations: those with advanced cirrhosis (Child Turcotte Pugh [CTP] class B or C; n=60) and those with recurrent HCV infection posttransplant (n=53). Rate of sustained virologic response of 12 weeks (SVR12) was 83% among those with advanced cirrhosis and 94% among those with recurrent HCV infection posttransplant. In the population with advanced cirrhosis, SVR12 rate was 76% among patients with HCV genotype 1a and 100% among patients with HCV genotype 1b. In the population with advanced cirrhosis, SVR12 rate was 94% among patients with CTP class B cirrhosis and 56% among patients with CTP class C cirrhosis. Among subjects with HCV genotype 3, SVR12 rates were 83% and 91%, respectively, in those with advanced cirrhosis and recurrent HCV infection posttransplant.

Fontana and colleagues (Fontana, 2015 [5]) reported on the use of daclatasvir-containing regimens with either sofosbuvir or simeprevir in 64 liver transplant recipients with HCV genotype 1 infection. SVR12 rate was 84% overall, 87% in the group that received daclatasvir and sofosbuvir, and 80% in the group that received daclatasvir and simeprevir. Herzer and colleagues (Herzer, 2015 [6]) described 6 liver transplant recipients with recurrent HCV infection, 4 (67%) of whom achieved SVR with a regimen of daclatasvir, simeprevir, and RBV. Overall, daclatasvir-containing regimens appear to be well tolerated, with anemia noted when RBV was used. Cyclosporine and tacrolimus increase daclatasvir area under the curve by 40% and 5%, respectively; these changes are not clinically significant. Daclatasvir does not cause clinically meaningful changes in calcineurin inhibitor, mammalian target of rapamycin (mTOR) inhibitor,
steroid, or mycophenolate levels.

The SOLAR-1 study was a large, multicenter, randomized controlled trial that included liver transplant recipients (n=223) across a broad spectrum of histologic and clinical severity of recurrence (n=111 with Metavir fibrosis stage F0-F3; n=51 with HCV genotype 1 or 4 and compensated CTP class A cirrhosis; n=61 with decompensated CTP class B or C cirrhosis). Study participants were randomly assigned to receive fixed-dose combination ledipasvir (90 mg) and sofosbuvir (400 mg) (hereafter ledipasvir/sofosbuvir) and weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) for either 12 weeks or 24 weeks. On an intention-to-treat basis, SVR was achieved in 96% of patients with Metavir fibrosis stages F0 to F3 and in 96% of those with compensated cirrhosis, in both the 12- and 24-week arms; all patients received RBV. RBV dose was weight based for patients with Metavir fibrosis stage F0 to F3 and CTP class A cirrhosis. For patients with CTP class B or C cirrhosis, RBV was initiated at 600 mg daily followed by dose escalation as tolerated. (Reddy, 2014) Only 2% of patients discontinued treatment owing to adverse events. Efficacy was lower in patients with CTP class B cirrhosis (85% SVR12) or CTP class C cirrhosis (60% SVR12), with no increase in SVR observed in patients who received 24 weeks of treatment. Mortality rate was 10% during the study among patients with CTP class B or C cirrhosis.

As the importance of RBV cannot be ascertained from the SOLAR study, in which all patients received RBV, the safest presumption is that RBV may contribute to the high SVR12 rates observed. In a previous study of a similar patient population to that of the SOLAR study, 40 patients with recurrent HCV infection following liver transplantation were treated for 24 weeks with sofosbuvir plus RBV, with SVR12 achieved in 70%. (Charlton, 2014) Although the basis for attenuated SVR rate observed in patients with more advanced HCV infection post-liver transplant, these results together with those of the sofosbuvir compassionate-use program (Forns, 2013a) suggest that the optimal period to initiate therapy may be the first 6 months to 12 months post-transplant to minimize the likelihood of having to treat patients with more advanced liver disease.

No data on ledipasvir/sofosbuvir are available for patients with HCV genotype 3 infection in the posttransplant setting. Very limited phase II data are available from a single-center study (ELECTRON-II) that examined ledipasvir/sofosbuvir used with (n=26) or without (n=25) RBV for 12 weeks in treatment-naive patients with HCV genotype 3 infection; 15% of patients had cirrhosis. All 26 (100%) patients in the RBV-containing arm achieved SVR12 compared with 16 of 25 (64%) of those in the RBV-free arm.

Although these data raise the possibility that the addition of ledipasvir to sofosbuvir and RBV may shorten the course of therapy for persons with HCV genotype 3 infection, the high effective concentration (EC50) of ledipasvir for HCV genotype 3 (Wong, 2013; Kohler, 2014) and the homogenous patient population studied limit the generalizability of this study. Until further data are available to confirm these findings, a recommendation for use of this regimen cannot be made at this time. (Gane, 2013b)

In a multicenter study of 34 liver transplant recipients with mild recurrence (Metavir fibrosis stage F0-F2) of HCV genotype 1 infection, fixed-dose combination paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (PrOD) and weight-based RBV was given for 24 weeks and achieved an SVR24 rate of 96%. (Mantry, 2014) Because of the drug-drug interactions between ritonavir and calcineurin inhibitors, prospective dose adjustments were needed for cyclosporine and tacrolimus. Interactions between ritonavir and other medications commonly taken by liver transplant recipients are also possible and will require detailed consideration when using this regimen. The efficacy and tolerability of this regimen in patients with more advanced HCV infection post-liver transplant are unknown.
Prospective studies of simeprevir with sofosbuvir in the posttransplant setting are ongoing. A retrospective multicenter analysis of sofosbuvir (400 mg daily) plus simeprevir (150 mg daily) with or without RBV in 77 recipients reported an SVR4 rate of 92%. (Pungpapong, 2014 [14]) The coadministration of single-dose cyclosporine with simeprevir resulted in a 19% increase in cyclosporine concentrations and no change in simeprevir concentrations (see simeprevir prescribing information [15]). However, in an interim analysis of an ongoing study (TMC435HPC3016), concomitant use of simeprevir (plus daclatasvir and RBV) with cyclosporine at steady state resulted in an approximately 6-fold increase in plasma concentrations of simeprevir compared with historical data of simeprevir in the absence of cyclosporine. This interaction may be caused by inhibition of organic ion-transporting polypeptide 1B1 (OATP1B1), p-glycoprotein (P-gp), and cytochrome P450 3A (CYP3A) by cyclosporine. Given these findings, simeprevir should not be coadministered with cyclosporine.

The coadministration of single-dose tacrolimus with simeprevir did not result in a notable change of tacrolimus concentrations (see simeprevir prescribing information [15]). In an ongoing study, concomitant use of simeprevir with tacrolimus also resulted in a 2-fold increase in plasma concentrations of simeprevir compared with historical data (see simeprevir prescribing information [15]). Based on phase I studies, a 2-fold increase in simeprevir concentrations is unlikely to be clinically significant.

Clinicians may consider the use of sofosbuvir plus simeprevir in patients receiving tacrolimus with therapeutic drug monitoring, particularly in those expected to have difficulty tolerating RBV (eg, patients with impaired renal function or anemia) or who are unable to forego proton pump inhibitor therapy (proton pump inhibitors attenuate ledipasvir absorption by >90%). A further option in patients who are RBV intolerant is 24 weeks of ledipasvir/sofosbuvir.

The following regimens are NOT recommended for treatment-naive patients with HCV infection in the allograft, including those with compensated cirrhosis [3].

- Regimens containing PEG-IFN
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral

Telaprevir or boceprevir should not be used in the post-liver transplant population because of associated toxicities and drug interactions with calcineurin inhibitors.

** Decompensated Cirrhosis

** **Recommended regimen for treatment-naive and -experienced liver transplant recipients with decompensated cirrhosis** [3] *(Child Turcotte Pugh [CTP] class B or C [3]) with HCV genotype 1 or 4 infection in the allograft.*

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with a low initial dose of RBV (600 mg, increased as tolerated) for 12
weeks is recommended for liver transplant recipients with **decompensated cirrhosis** [3] (**CTP class B or C** [3]) who have HCV genotype 1 or 4 infection in the allograft.

Rating: Class I, Level B

Recommended regimen for treatment-naive and -experienced liver transplant recipients with **decompensated cirrhosis [3] (**Child Turcotte Pugh [CTP] class B or C** [3]) who have HCV genotype 2 infection in the allograft.**

Daily sofosbuvir (400 mg) and RBV (initial dose 600 mg/day, increased monthly by 200 mg/day as tolerated to weight-based dose of 1000 mg [<75 kg] to 1200 mg [≥75 kg] mg) for 24 weeks is recommended for liver transplant recipients with **decompensated cirrhosis** [3] (**CTP class B or C** [3]) who have HCV genotype 2 infection in the allograft.

Rating: Class IIb, Level C

Recommended regimen for treatment-naive and -experienced patients with **decompensated cirrhosis [3] (**Child Turcotte Pugh [CTP] class B or C** [3]) who have HCV genotype 3 infection in the allograft.**

Daily sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 24 weeks is recommended for persons with **decompensated cirrhosis** [3] (**CTP class B or C** [3]) who have HCV genotype 3 infection in the allograft.

Rating: Class I, Level B

The following regimens are NOT recommended for patients with **decompensated cirrhosis [3] who have HCV infection in the allograft.**

- Regimens containing PEG-IFN
- Regimens containing simeprevir
- Fixed-dose combination of paritaprevir, ritonavir, and ombitasvir plus twice-daily dosed dasabuvir and RBV
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral **Rating:** Class III, Level A
- Telaprevir- or boceprevir-based regimens **Rating:** Class III, Level A
Mixed Genotypes

Rarely, genotyping assays may indicate the presence of a mixed infection (eg, genotypes 1a and 2). Treatment data for mixed genotypes with direct-acting antivirals are sparse, and awaiting availability of a pangenotypic regimen may be considered. Until then, when treatment is necessary, the choice of antiviral combination and duration of treatment should maximize efficacy against each genotype represented in the assay. When the correct combination or duration is unclear, expert consultation should be sought.

Changes made on August 7, 2015.
Unique Patient Populations: Post-Liver Transplantation Box. Summary of Recommendations for Patients Who Develop Recurrent HCV Infection Post-Liver Transplantation

Recommended regimens for treatment-naive and -experienced patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [1].

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [1].

Rating: Class I, Level B

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with weight-based RBV (1000 mg [<75 kg] to 1200 mg [≥75 kg]) for 12 weeks is recommended for patients with HCV genotype 1 or 4 infection in the allograft, including those with compensated cirrhosis [1].

Rating: Class I, Level B

Recommended regimens for treatment-naive patients with HCV genotype 1 or 4 infection in the allograft and with compensated liver disease, who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 1 or 4 infection in the
allograft and with compensated liver disease, who are RBV intolerant or ineligible.

Rating: Class Iib, Level C

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) for 24 weeks is recommended for treatment-naive patients with HCV genotype 1 or 4 infection in the allograft and with compensated liver disease, who are RBV intolerant or ineligible.

Rating: Class I, Level B

Alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with compensated cirrhosis [1].

Daily sofosbuvir (400 mg) plus simeprevir (150 mg) with or without weight-based RBV for 12 weeks is an alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with compensated cirrhosis [1].

Rating: Class I, Level B

Alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with compensated cirrhosis [1].

Recommended regimens for treatment-naive and -experienced patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [1].

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [1].

Rating: Class II, Level A

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [1].
Recommended regimen for treatment-naive and -experienced patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [1], who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for patients with HCV genotype 2 infection in the allograft, including those with compensated cirrhosis [1], who are RBV intolerant or ineligible.

Recommended regimen for treatment-naive and -experienced patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [1].

Daily daclatasvir (60 mg), sofosbuvir (400 mg), and low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [1].

Daily sofosbuvir (400 mg) and weight-based RBV for 24 weeks is recommended for treatment-naive and -experienced patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [1].

Recommended regimen for treatment-naive patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [1], who are RBV intolerant or ineligible.

Daily daclatasvir (60 mg), sofosbuvir (400 mg) for 24 weeks is recommended for treatment-naive patients with HCV genotype 3 infection in the allograft, including those with compensated cirrhosis [1], who are RBV intolerant or ineligible.

Recommended regimen for treatment-naive and -experienced liver transplant recipients with decompensated cirrhosis [1] (Child Turcotte Pugh [CTP] class B or C [1]) who have HCV genotype 3 infection in the allograft.

Daily sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased...
as tolerated) for 24 weeks is recommended for liver transplant recipients with decompensated cirrhosis \cite{1} (CTP class B or C \cite{1}) who have HCV genotype 3 infection in the allograft.

Rating: Class I, Level B

Alternative regimen for patients with HCV genotype 1 infection in the allograft, including those with early stage fibrosis (Metavir stage F0-F2).

Daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) and weight-based RBV for 24 weeks is an alternative regimen for patients with HCV genotype 1 infection in the allograft, who have early stage fibrosis (Metavir stage F0-F2).

Rating: Class I, Level B

The following regimens are NOT recommended for treatment-naive patients with HCV infection in the allograft, including those with compensated cirrhosis \cite{1}.

- Regimens containing PEG-IFN
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. **Rating:** Class III, Level A

Recommended regimen for treatment-naive and -experienced liver transplant recipients with decompensated cirrhosis \cite{1} \cite{1} \cite{1} (Child Turcotte Pugh [CTP] class B or C \cite{1}) who have HCV genotype 1 or 4 infection in the allograft.

Daily fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg) with a low initial dose of RBV (600 mg, increased as tolerated) for 12 weeks is recommended for liver transplant recipients with decompensated cirrhosis \cite{1} \cite{1} (CTP class B or C \cite{1}) who have HCV genotype 1 or 4 infection in the allograft.

Rating: Class I, Level B

Recommended regimen for treatment-naive and -experienced liver transplant recipients with decompensated cirrhosis \cite{1} \cite{1} \cite{1} (Child Turcotte Pugh [CTP] class B or C \cite{1}) who have HCV genotype 2 infection in the allograft.

Daily sofosbuvir (400 mg) and RBV (initial dose 600 mg/day, increased monthly by 200 mg/day as tolerated to weight-based dose of 1000 mg [<75 kg] to 1200 mg [>75 kg] mg) for 24 weeks is recommended for liver transplant recipients with decompensated cirrhosis \cite{1} (CTP class B or C \cite{1}) who have HCV genotype 2 infection in the allograft.

Rating: Class IIb, Level C
Recommended regimen for treatment-naive and -experienced patients with decompensated cirrhosis [1] (Child Turcotte Pugh [CTP] class B or C [1]) who have HCV genotype 3 infection in the allograft.

Daily sofosbuvir (400 mg) and low initial dose of RBV (600 mg, increased as tolerated) for 24 weeks is recommended for persons with decompensated cirrhosis [1] (CTP class B or C [1]) who have HCV genotype 3 infection in the allograft.

Rating: Class I, Level B

The following regimens are NOT recommended for patients with decompensated cirrhosis [1] who have HCV infection in the allograft.

- Regimens containing PEG-IFN
- Regimens containing simeprevir
- Fixed-dose combination of paritaprevir, ritonavir, and ombitasvir plus twice-daily dosed dasabuvir and RBV
- Monotherapy with PEG-IFN, RBV, or a direct-acting antiviral. Rating: Class III, Level A
- Telaprevir- or boceprevir-based regimens. Rating: Class III, Level A

Changes made on August 7, 2015.
UNIQUE PATIENT POPULATIONS: PATIENTS WITH RENAL IMPAIRMENT

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

The summary of recommendations for patients with renal impairment, including severe renal impairment (creatinine clearance [CrCl] <30 mL/min) or end-stage renal disease (ESRD) requiring hemodialysis or peritoneal dialysis is found in the BOX [2].

Recommended dosage adjustments for patients with renal impairment, including severe renal impairment (creatinine clearance [CrCl] <30 mL/min) or end-stage renal disease (ESRD).

For patients with mild to moderate renal impairment (CrCl 30 mL/min-80 mL/min), no dosage adjustment is required when using daclatasvir, fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg), or fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) with (or without for HCV genotype 4 infection) twice-daily dosed dasabuvir (250 mg), simeprevir, or sofosbuvir to treat or retreat HCV infection in patients with appropriate genotypes.

Rating: Class I, Level A

Recommended regimen for patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option.

For patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option, daily fixed-dose combination of paritaprevir (150
mg)/ritonavir (100 mg)/ombitasvir (25 mg) with twice-daily dosed dasabuvir (250 mg) (for HCV genotype 1b infection) or without dasabuvir (for HCV genotype 4 infection) is recommended. However, this recommendation is based on limited data on safety and efficacy.

Rating: Class IIb, Level B

For HCV genotype 1a infection, daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) with RBV at reduced doses (200 mg thrice weekly to daily*) is recommended. However, caution is recommended in this group, owing to the potential for hemolysis in this population, and RBV should be restricted to those with a baseline hemoglobin concentration above 10 g/dL.

Rating: Class IIb, Level B

For patients with HCV genotype 2, 3, 5, or 6 infection and CrCl below 30 mL/min, PEG-IFN and dose-adjusted RBV is recommended if treatment is necessary and transplantation cannot be performed.

Rating: Class IIb, Level B

*RBV should be discontinued if hemoglobin level declines by more than 2 g/dL despite the use of erythropoietin.

Recommended regimen for patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option, who are RBV intolerant or ineligible.

For patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high, consultation with an expert is recommended, to assess the appropriateness of a sofosbuvir-containing regimen, because safety and efficacy data are not available in this setting.

Rating: Class IIb, Level C

Daclatasvir, is a nonstructural protein 5A (NS5A) inhibitor with pangenotypic activity. It is 99% plasma bound and primarily metabolized by the liver and excreted in feces, and less than 10% of daclatasvir is excreted by the kidneys. The AI444063 study was conducted to assess the pharmacokinetics and safety of a single dose of daclatasvir (60 mg) in patients who did not have HCV infection, with or without
impaired renal function. Patients with ESRD who were on hemodialysis (estimated glomerular filtration rate [eGFR] <15 mL/min/1.73 m²) were matched by age, sex, and weight to healthy controls (CrCl >90 mL/min). Patients with moderate (eGFR 30-59 mL/min/1.73 m²) and severe (eGFR 15-29 mL/min/1.73 m²) renal impairment were also included in the study, in which all subjects received a single dose of daclatasvir (60 mg). (Garimella, 2014 [3]) Neither daclatasvir maximum concentration (Cmax) nor plasma bound fraction changed substantially in subjects with moderate or severe renal impairment and ESRD, compared with healthy control subjects. A single dose of daclatasvir was generally well tolerated by patients with renal impairment and by healthy control subjects. Daclatasvir can be administered to subjects with renal impairment, including ESRD, without dose modification.

The HCV-TARGET study is an ongoing prospective observational cohort study that evaluates the use of direct-acting antiviral (DAA) agents across clinical practices in North America and Europe. The study reported the safety and efficacy of sofosbuvir-containing regimens in patients with mild to severe renal dysfunction (eGFRs <30, 31-45, 46-60, and >60 mL/min). The patients received different regimens that included sofosbuvir (PEG-IFN, RBV, and sofosbuvir; simeprevir and sofosbuvir with or without RBV; or sofosbuvir and RBV). Overall, the regimens were well tolerated with no increased discontinuation among patients with low eGFRs. The rates of sustained virologic response at 12 weeks (SVR12) were similar across the groups regardless of renal function. Notably, there were progressive deterioration of renal function and renal symptoms in the patients with eGFRs below 30 mL/min, suggesting the need for close monitoring of these patients. In summary, patients with low baseline renal function have a higher frequency of anemia, worsening renal dysfunction, and more severe adverse events, but treatment responses remain high and comparable to those without renal impairment.

Data on patients treated with a regimen of simeprevir and low-dose sofosbuvir without RBV have been reported. In one study, 18 HCV-infected patients (11 requiring hemodialysis, 3 with a mean eGFR of 16 mL/min) underwent open-label treatment with simeprevir and sofosbuvir. All patients received full-dose simeprevir (150 mg) daily. Sofosbuvir dose was reduced to 200 mg daily in 15 patients and 400 mg every other day in 3 patients. The length of therapy was 12 weeks in 17 patients and 24 weeks in 1 patient with cirrhosis. One patient developed new onset hepatic encephalopathy and another developed uncontrolled diarrhea, both requiring hospitalizations during treatment. Minor adverse events were fatigue (28%), anemia (11%), rash or itching (11%), and nausea (5%) and were managed medically; there were no treatment discontinuations. Of the 16 patients who completed treatment, only 9 patients reached relevant milestones. Per the current per-protocol analysis, SVR4 was seen in 91% and SVR12 in 89%. One patient with cirrhosis (who had a prior HCV protease inhibitor-containing treatment failure) relapsed within 4 weeks after completion of treatment. In summary, the regimen of simeprevir and reduced-dose sofosbuvir is safe and well tolerated. In another study, 12 patients with eGFRs below 30 mL/min received sofosbuvir (400 mg) and simeprevir (150 mg). The regimen was well tolerated and resulted in viral suppression in all patients. (Nazario, 2015 [4])

Single-dose pharmacokinetics of the fixed-dose combination of paritaprevir (150 mg), ritonavir (100 mg), and ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) (hereafter PrOD) was evaluated in HCV-seronegative volunteers with mild (eGFR 60-89 mL/min), moderate (eGFR 30-59 mL/min), or severe (eGFR <30 mL/min) renal impairment. The results concluded changes in pharmacokinetics that were not considered to be clinically relevant in HCV-infected patients. (PrOD prescribing information [5])

Twenty patients with HCV genotype 1 infection and stage 4 or 5 (eGFR <30 mL/min) chronic kidney disease (CKD) without cirrhosis were treated with PrOD with or without RBV in a multicenter, open-label phase IIb study. (Pockros, 2015 [6]) Notably, 70% of patients were black and 65% had CKD requiring
hemodialysis. RBV (in those with HCV genotype 1a only) was dosed 4 hours before hemodialysis and monitored with weekly hemoglobin assessments. RBV doses were suspended for a 2 g/dL or more drop in hemoglobin level and resumed when the hemoglobin level normalized. All patients (10/10) achieved SVR4. (Pockros, 2015) Interestingly, the use of RBV was associated with more of a drop in hemoglobin level, and 8 of 13 patients required interruption of RBV dosing. Four of 8 patients also required erythropoietin treatment during the first 7 weeks of therapy. Mean drug concentrations (C\text{trough}) of all drugs were measured and levels were within the range that was observed with previous pharmacokinetic studies in healthy volunteers. In summary, most patients with HCV genotype 1 with or without cirrhosis who were treated with PRD with or without RBV achieved viral suppression. However, RBV-induced anemia can occur frequently, and close monitoring of all patients and judicious dose reductions of RBV are required.

Sofosbuvir enters the hepatocyte where it is metabolized to its active form, GS-461203. The downstream inactive nucleoside metabolite GS-331007 is almost exclusively eliminated from the body renally, mediated through a combination of glomerular filtration and active tubular secretion. Results of phase II and phase III clinical trials of sofosbuvir-containing regimens excluded patients with serum creatinine levels greater than 2.5 mg/dL or CrCl levels less than 60 mL/min. The pharmacokinetics of a single 400 mg dose of sofosbuvir were assessed in persons not infected with HCV (study P7977-0915) who had mild (eGFR >50 mL/min/1.73 m2 and <80 mL/min/1.73 m2), moderate (eGFR >30 mL/min/1.73 m2 and <50 mL/min/1.73 m2), or severe (eGFR <30 mL/min/1.73 m2) renal impairment and persons with ESRD who required hemodialysis.

Compared with persons with normal renal function (eGFR >80 mL/min/1.73 m2), the sofosbuvir area under the curve (AUC; 0-inf) increased by 61%, 107%, and 171% in subjects with mild, moderate, and severe renal impairment, respectively; GS-331007 AUC (0-inf) increased by 55%, 88%, and 451%, respectively. In subjects with ESRD, sofosbuvir and GS-331007 AUC (0-inf) increased by 28% and 1280%, respectively, when sofosbuvir was dosed 1 hour before hemodialysis. Sofosbuvir and GS-331007 AUC (0-inf) increased by 60% and 2070%, respectively, when sofosbuvir was dosed 1 hour after hemodialysis. No dosage adjustment is required for patients with mild or moderate renal impairment (CrCl 30 mL/min-80 mL/min). The safety of sofosbuvir has not been established in patients with severe renal impairment or ESRD. Therefore, a dose recommendation cannot be provided for these populations at this time, although a dedicated study to evaluate optimal dosing of sofosbuvir in HCV-infected patients with severe renal impairment or ESRD on hemodialysis is currently underway.

No clinically relevant changes in ledipasvir pharmacokinetics were found in subjects with normal renal function and those with severe renal impairment (eGFR <30 mL/min by Cockcroft-Gault) after a single dose of 90 mg of ledipasvir was administered.

Unique Patient Populations Table: Dose Adjustments Needed for Patients With Renal Impairment

<table>
<thead>
<tr>
<th>Renal Impairment</th>
<th>eGFR / CrCl level (mL/min)</th>
<th>PEG-IFN</th>
<th>RBV</th>
<th>Sofosbuvir</th>
<th>Ledipasvir</th>
<th>Daclatasvir</th>
<th>Ombitasvir</th>
<th>Dasabuvir</th>
<th>Paritaprevir</th>
<th>Simeprevir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Creatinine Clearance (mg/dl)</td>
<td>PEG-IFN (2a) Dose</td>
<td>PEG-IFN (2b) Dose</td>
<td>Other Doses</td>
<td>Standard Doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>30-50</td>
<td>180 µg; PEG-IFN (2b) 1 µg/kg (25% reduction)</td>
<td></td>
<td>Alternating doses 200 mg and 400 mg every other day</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td><30</td>
<td>135 µg; PEG-IFN (2b) 1 µg/kg (50% reduction)</td>
<td></td>
<td>200 mg/d</td>
<td>Data not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESRD with HD</td>
<td></td>
<td>135 µg/wk or PEG-IFN (2b) 1 µg/kg/wk or standard IFN 3 mU 3x/wk</td>
<td></td>
<td>200 mg/d</td>
<td>Data not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CrCl, creatinine clearance; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; HD, hemodialysis.

Changes made on August 7, 2015.
Unique Patient Populations: Renal Impairment Box. Summary of Recommendations for Patients with Renal Impairment Including Severe Renal Impairment (CrCl <30 ML/min) or ESRD Requiring Hemodialysis or Peritoneal Dialysis

Recommended dosage adjustments for patients with renal impairment, including severe renal impairment (creatine clearance [CrCl] <30 mL/min) or end-stage renal disease (ESRD).

For patients with mild to moderate renal impairment (CrCl 30 mL/min-80 mL/min), no dosage adjustment is required when using daclatasvir, fixed-dose combination of ledipasvir (90 mg)/sofosbuvir (400 mg), or fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) with (or without for HCV genotype 4 infection) twice-daily dosed dasabuvir (250 mg), simeprevir, or sofosbuvir to treat or retreat HCV infection in patients with appropriate genotypes.

Rating: Class I, Level A

Recommended regimen for patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option.

For patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option, daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) with twice-daily dosed dasabuvir (250 mg) (for HCV genotype 1b infection) or without dasabuvir
(for HCV genotype 4 infection) is recommended. However, this recommendation is based on limited data on safety and efficacy.

Rating: Class IIb, Level B

For HCV genotype 1a infection, daily fixed-dose combination of paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) plus twice-daily dosed dasabuvir (250 mg) with RBV at reduced doses (200 mg thrice weekly to daily*) is recommended. However, caution is recommended in this group, owing to the potential for hemolysis in this population, and RBV should be restricted to those with a baseline hemoglobin concentration above 10 g/dL.

Rating: Class IIb, Level B

For patients with HCV genotype 2, 3, 5, or 6 infection and CrCl below 30 mL/min, PEG-IFN and dose-adjusted RBV is recommended if treatment is necessary and transplantation cannot be performed.

Rating: Class IIb, Level B

*RBV should be discontinued if hemoglobin level declines by more than 2 g/dL despite the use of erythropoietin.

Recommended regimen for patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high and renal transplant is not an immediate option, who are RBV intolerant or ineligible.

For patients with CrCl below 30 mL/min who do not have cirrhosis but for whom the urgency to treat (or retreat) is high, consultation with an expert is recommended, to assess the appropriateness of a sofosbuvir-containing regimen, because safety and efficacy data are not available in this setting.

Rating: Class IIb, Level C

Changes made on August 7, 2015.
MANAGEMENT OF ACUTE HCV INFECTION

Expansions and notes for abbreviations used in this section can be found in Methods Table 3 [1].

A summary of recommendations for Managing Acute HCV Infection is found in the BOX [2].

This section provides guidance on the diagnosis and medical management of acute HCV infection, which is defined as presenting within 6 months of the exposure. During this time, there is a 20% to 50% chance of spontaneous resolution of infection. (Kamal, 2008 [3]) In the past, cure rates of acute infection with IFN-based treatment were very high. (Grebely, 2014 [4]) The present guidance reflects current trends transitioning toward safer, IFN-sparing treatments for chronic infection and the implications for the approach to acute HCV treatment.

Acute HCV infection may result from exposure to the virus through various routes. The highest risk is associated with repeated parenteral exposures from contaminated equipment in an injection drug use (IDU) setting. Lower rates of HCV transmission occur from needlestick injuries in which health care workers are exposed to the blood of an HCV-infected patient. Heterosexual exposure risk is very low. In comparison, transmission rates among HIV-infected men who have unprotected sex with men are much higher, particularly among those who engage in high-risk sexual practices that increase trauma to the mucosal membranes and exposure to blood. (Boesecke, 2012 [5])

Recommended testing for diagnosing acute HCV infection.

HCV antibody and HCV RNA testing are recommended when acute HCV infection is suspected due to exposure, clinical presentation, or elevated aminotransferase levels (see Figure [6]).

Rating: Class I, Level C

Recommendations for HCV testing are also found in the HCV Testing and Linkage to Care [7] section.

Diagnosis of acute infection permits estimation of annual incidence rates and transmission patterns, thereby facilitating implementation and assessment of prevention programs. At the individual level, a
diagnosis of acute infection expedites linkage to care, counseling regarding high-risk behavior, and timely interventions to reduce transmission of the virus and progression of liver disease. (Bruneau, 2014 [8]) Indeed, some persons involved in high-risk behaviors practice serosorting, defined as using anti-HCV antibody serostatus to determine whether to engage in high-risk behaviors with certain individuals. (Smith, 2013 [9]) Thus, undiagnosed acutely infected persons may be at greater risk of transmitting HCV to their presumably seronegative contacts than would be expected by chance.

The best laboratory evidence to support a diagnosis of acute HCV infection is (1) a positive HCV RNA test in the setting of a negative HCV antibody test (identification during the seronegative “window” period), (Cox, 2005 [10]) or (2) a positive HCV antibody test after prior negative HCV antibody test (termed seroconversion). There are rare instances in which these approaches may be misleading, such as in immunosuppressed individuals with impaired antibody production. (Chamot, 1990 [11])

Discrete Exposure

The above types of clear laboratory documentation of acute infection are easiest to achieve when there has been a discrete exposure (eg, after new onset or a change in drug injection practice, a percutaneous needlestick exposure to an HCV-infected individual, a potentially nonsterile tattoo, or sexual assault). In those instances, baseline HCV antibody and RNA testing should be done within 48 hours of the exposure to document whether there was antecedent HCV infection (see Figure [6]). If baseline testing is negative, repeat testing is recommended. Frequency of testing can be tailored based on management objectives (eg, monthly testing to identify and treat acute infection). If baseline anti-HCV antibody testing is positive but RNA testing is negative, repeat HCV RNA and alanine aminotransferase (ALT) testing is recommended to identify an acute reinfection. When baseline HCV antibody and RNA testing are both positive, the person most likely already has chronic HCV infection from prior exposures. The frequency of repeat testing should reflect management goals. At a minimum, repeat testing should be done 4 months to 6 months later. When earlier identification of infection or reinfection is desired, HCV RNA and ALT testing every 4 weeks to 6 weeks for 6 months is recommended.

No Discrete Exposure

Often, individuals suspected of having acute HCV infection do not have a discrete exposure or have no prior baseline testing, making a diagnosis of acute infection more difficult (see Table [12] below). Acute infection should be suspected if there is a new rise in the ALT level without an alternate cause. (Blackard, 2008 [13]); (Kim, 2013 [14]) Acute infection should also be suspected when there are low (especially <10^4 IU/mL) or fluctuating (>1 log_{10} IU/mL) HCV RNA values, or spontaneous clearance, which do not commonly occur outside of the first 6 months after acute HCV infection. (McGovern, 2009 [15]) A low signal-to-cutoff ratio of HCV antibody along with detectable HCV RNA may also be suggestive of the early weeks of acute primary infection, although this information may need to be specifically requested from the testing laboratory. (Araujo, 2011 [16]) Patients suspected of having acute HCV infection should also have a laboratory evaluation to exclude other or coexisting causes of acute hepatitis (eg, hepatitis A virus, hepatitis B virus, or autoimmune hepatitis) and should be tested for HIV.

Preexposure or postexposure prophylaxis with antiviral therapy is NOT recommended.

Rating: Class III, Level C
Although new antiviral treatment regimens are highly efficacious and more tolerable than IFN-based therapy, there are no data on the efficacy or cost-effectiveness of antiviral therapy for preexposure or postexposure prophylaxis of HCV infection. Some studies have shown that postexposure treatment with IFN-based regimens does not prevent infection. (Nakano, 1995 [17]; Arai, 1996 [18])

Table. Interpretation of Blood Testing During Diagnosis of Acute HCV Infection

<table>
<thead>
<tr>
<th>Test</th>
<th>Interpretation for Diagnosis of Acute HCV Infection</th>
</tr>
</thead>
</table>
| **HCV antibody** | • May be negative in the first 6 weeks after exposure
• May be delayed or absent when the individual is immunosuppressed
• Presence alone does not distinguish between acute and chronic infection
• Low signal-to-cutoff ratio may be present during acute HCV infection or represent a false-positive result |
| **HCV RNA** | • Viral fluctuations greater than 1 log$_{10}$ IU/mL may indicate acute HCV infection
• May be transiently negative during acute HCV infection
• Alone does not distinguish between acute and chronic infection |
| **Alanine aminotransferase (ALT)** | • Fluctuating peaks during acute HCV infection suggest acute infection
• May be normal during acute HCV infection
• May be elevated due to other liver insults such as alcohol consumption |

Recommendations for medical management and monitoring in acute HCV infection.

Regular laboratory monitoring is recommended in the setting of acute HCV infection. Monitoring HCV RNA (eg, every 4 weeks to 8 weeks) for 6 months to 12 months is also recommended to determine spontaneous clearance of HCV infection versus persistence of infection.

Rating: Class I, Level B

Counseling is recommended for patients with acute HCV infection to avoid hepatotoxic insults, including hepatotoxic drugs (eg, acetaminophen) and alcohol consumption, and to reduce the risk of HCV transmission to others.

Rating: Class I, Level C

Referral to an addiction medicine specialist is recommended for patients...
The patient with acute HCV infection should be counseled to reduce behaviors that could result in transmission, such as sharing of injection equipment or high-risk sexual practices. Because the risk of transmission of other infections is higher in the acute infection phase, some experts counsel patients with acute infection to consider using barrier precautions even in stable monogamous relationships. (see Testing and Linkage to Care [7]) For individuals with acute HCV infection who have a history of recent injection drug use, referral to an addiction medicine specialist is recommended when appropriate. (Litwin, 2009 [19]); (Strathdee, 2005 [20])

Patients with acute HCV infection are often asymptomatic or have nonspecific symptoms (fatigue, anorexia, mild or moderate abdominal pain, low-grade fever, nausea, vomiting) that frequently are not recognized as being associated with acute HCV infection. A small proportion (<25%) of patients with acute HCV infection will develop jaundice. Patients diagnosed with acute HCV infection should be initially monitored with hepatic panels (ALT, aspartate aminotransferase [AST], bilirubin, and international normalized ratio [INR] in the setting of increasing bilirubin level) at 2- to 4-week intervals. (Blackard, 2008 [13]) Laboratory monitoring should continue until the ALT levels normalize and HCV RNA becomes repeatedly undetectable, suggesting spontaneous resolution. If this does not occur, frequency of laboratory monitoring for patients with persistently detectable HCV RNA and elevated ALT levels should follow recommendations for monitoring patients with chronic HCV infection. (see Monitoring [21])

HCV infection will spontaneously clear in 20% to 50% of patients. (Kamal, 2008 [3]) In at least two-thirds of patients, this will occur within 6 months of the estimated time of infection (median, 16.5 weeks); only 11% of those who remain viremic at 6 months will spontaneously clear infection at some later time. (Grebely, 2014 [4]) Thus, detectable HCV RNA at 6 months after the time of infection will identify most persons who need HCV therapy. (see When and in Whom to Treat [22]) Those with spontaneous clearance should not be treated with antiviral therapy, but they should be counseled about the possibility of reinfection and tested routinely for reinfection if risk behaviors are ongoing (see Testing and Linkage to Care [7]). Of note, transient suppression of viremia can occur in those with acute HCV infection, even in those who progress to chronic infection. Thus, a single undetectable HCV RNA value is insufficient to declare spontaneous clearance. (Villano, 1999 [23]); (Mosley, 2008 [24]) (see Testing and Linkage to Care [7])

Predictors of spontaneous clearance include jaundice, elevated ALT level, hepatitis B virus surface antigen (HBsAg) positivity, female sex, younger age, HCV genotype 1, and host genetic polymorphisms, most notably those near the IL28B gene. (Kamal, 2008 [3]); (Mosley, 2008 [24])

There is no need to alter concomitant medications that are metabolized by hepatic enzymes unless there is concern for developing acute liver failure (eg, increasing bilirubin level and INR). Acetaminophen and alcohol consumption should be avoided during acute HCV infection. (Proeschold-Bell, 2012 [25]); (Dieperink, 2010 [26]); (Whitlock, 2004 [27]) Hospitalization is rarely indicated unless nausea and vomiting are severe. Although acute liver failure is very rare (<1%), it represents a serious and life-threatening complication of acute HCV infection. Patients with an INR above 1.5 or those who exhibit any signs of acute liver failure (eg, hepatic encephalopathy) should be referred to a liver transplant center immediately. The use of HCV antiviral regimens in acute liver failure should be managed by a clinician
experienced in HCV treatment, ideally in consultation with a liver transplant specialist.

Recommended treatment for patients with acute HCV infection.

If the practitioner and patient have decided that a delay in treatment initiation is acceptable, monitoring for spontaneous clearance is recommended for a minimum of 6 months. When the decision is made to initiate treatment after 6 months, treating as described for chronic hepatitis C is recommended. (see Initial Treatment of HCV Infection [28])

Rating: Class IIa, Level C

If a decision has been made to initiate treatment during the acute infection period, monitoring HCV RNA for at least 12 weeks to 16 weeks before starting treatment is recommended to allow for spontaneous clearance.

Rating: Class IIa, Level C

Recommended regimens for patients with acute HCV infection.

Owing to high efficacy and safety, the same regimens that are recommended for chronic HCV infection are recommended for acute infection.

Rating: Class IIa, Level C

For patients in whom HCV infection spontaneously clears, treatment is NOT recommended.

Rating: Class III, Level B

When the efficacy of the treatment of acute HCV infection (particularly for genotype 1) was superior to the treatment of chronic infection, there was a strong impetus to identify and treat acute HCV infection. (See 2009 AASLD guidelines, [Ghany, 2009](#)) The current availability of IFN-sparing HCV treatments that have high safety and efficacy for chronic HCV infection reduces (and possibly eliminates) the "efficacy advantage" of early treatment. Indeed, a randomized controlled study of IFN-based therapy showed that delaying treatment was not inferior to early treatment, and many who received early IFN-based therapy were unable to complete treatment because of adverse effects. ([Deterding, 2013](#)) Until data documenting the efficacy and safety of treatment of acute hepatitis C with IFN-sparing therapy are available, monitoring for spontaneous clearance for a minimum of 6 months before initiating treatment is recommended. When the decision is made to initiate treatment after 6 months, treatment as described for chronic hepatitis C is recommended.
Although some argue that the benefits of waiting until 6 months to document chronic hepatitis C and of using well-studied treatments for chronic hepatitis C currently outweigh the disadvantages of delaying treatment of acute infection for many patients, for some persons, there may be additional benefits of early treatment. Such benefits may include prevention of transmission to others (eg, people who inject drugs or surgeons), prevention of severe complications (eg, someone with underlying compensated cirrhosis who is acutely superinfected with HCV, and a decreased chance of being lost to follow-up. If for these reasons a decision has been made to initiate treatment during the acute infection period, the same regimens recommended for chronic HCV infection (see Initial Treatment of HCV Infection [28] and When and in Whom to Treat [22] sections) are recommended for acute infection given their high efficacy and safety in chronic HCV infection.

Changes made on June 28, 2015.
Acute Box. Recommendations for Management of Acute HCV Infection

Recommended testing for diagnosing acute HCV infection.

HCV antibody and HCV RNA testing are recommended when acute HCV infection is suspected due to exposure, clinical presentation, or elevated aminotransferase levels (see Figure [1]).

Rating: Class I, Level C

Preexposure or postexposure prophylaxis with antiviral therapy is NOT recommended.

Rating: Class III, Level C

Recommendations for medical management and monitoring in acute HCV infection.

Regular laboratory monitoring is recommended in the setting of acute HCV infection. Monitoring HCV RNA (eg, every 4 weeks to 8 weeks) for 6 months to 12 months is also recommended to determine spontaneous clearance of HCV infection versus persistence of infection.

Rating: Class I, Level B

Counseling is recommended for patients with acute HCV infection to avoid hepatotoxic insults, including hepatotoxic drugs (eg, acetaminophen) and alcohol consumption, and to reduce the risk of HCV transmission to others.

Rating: Class I, Level C
Referral to an addiction medicine specialist is recommended for patients with acute HCV infection related to substance use.

Rating: Class I, Level B

Recommended treatment for patients with acute HCV infection.

If the practitioner and patient have decided that a delay in treatment initiation is acceptable, monitoring for spontaneous clearance is recommended for a minimum of 6 months. When the decision is made to initiate treatment after 6 months, treating as described for chronic hepatitis C is recommended. (see [Initial Treatment of HCV Infection](#) [2])

Rating: Class IIa, Level C

If a decision has been made to initiate treatment during the acute infection period, monitoring HCV RNA for at least 12 weeks to 16 weeks before starting treatment is recommended to allow for spontaneous clearance.

Rating: Class IIa, Level C

Recommended regimens for patients with acute HCV infection.

Owing to high efficacy and safety, the same regimens that are recommended for chronic HCV infection are recommended for acute infection.

Rating: Class IIa, Level C

For patients in whom HCV infection spontaneously clears, treatment is NOT recommended.

Rating: Class III, Level B
Acute Figure. Testing Algorithm for Discrete Recognized Hepatitis C Virus (HCV) Exposure

Figure. Testing Algorithm for Discrete Recognized Hepatitis C Virus (HCV) Exposure

- **HCV antibody (Ab) negative, HCV RNA negative**
 - No HCV infection

- **HCVAb positive, HCV RNA negative**
 - Prior resolved infection

- **HCVAb negative, HCV RNA positive**
 - Acute infection already present

- **HCVAb positive, HCV RNA positive**
 - Prior chronic infection

Baseline testing within 48 hours of exposure

- **Attachment:**
 - a. Often there is no discrete exposure or the entry to health care occurs with jaundice or elevated liver enzymes. In those instances, baseline testing cannot be done and the diagnosis of acute infection is more challenging (see text).
 - b. Repeat HCV Ab is not needed if it is positive at baseline. Frequency of testing can be tailored based on management objectives (eg, monthly testing to identify and treat acute infection).
 - c. Some would treat after waiting 8 weeks to 12 weeks for spontaneous clearance (see text). Benefits of HCV antiviral therapy or IFN-based (alternative) within 12 weeks of acute infection are that this may decrease transmission risk to others (eg, among injection drug users or surgeons), prevent severe complications (eg, underlying cirrhosis superinfected with acute HCV infection), and minimize chance of being lost to follow-up.
 - d. If there were additional exposures in the preceding 6 months, a patient with a new diagnosis who is HCV RNA and HCV Ab positive may still be in the acute infection phase. Symptoms, high ALT level, or viral fluctuations may help distinguish acute from chronic HCV.
 - e. Baseline testing should be done within 48 hours of exposure to determine existing infection status: HCV RNA, HCV Ab, and ALT.
REFERENCES

Abergel A, Loustaud-Ratti V, Metivier S et al. Ledipasvir/sofosbuvir for the treatment of patients with chronic genotype 4 or 5 HCV infection. 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015; Vienna, Austria.

Andreone P, Colombo MG, Enejosa JV, et al. ABT-450, ritonavir, ombitasvir, and dasabuvir achieves 97% and 100% sustained virologic response with or without ribavirin in treatment-

Bourliere M, Bronowicki J, de Ledinghen V et al. Ledipasvir/sofosbuvir fixed dose combination is safe and efficacious in cirrhotic patients who have previously failed protease-inhibitor based triple therapy. [Abstract LB-6.] 65th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 7-11, 2014a; Boston, MA.

Bourliere M, Sulkowski MS, Omata M et al. An integrated safety and efficacy analysis of >500 patients with compensated cirrhosis treated with ledipasvir/sofosbuvir with or without ribavirin. [Abstract 82.] 65th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 7-11, 2014b; Boston, MA.

Centers for Disease Control and Prevention. Recommendations for identification and public health management of persons with chronic hepatitis B virus infection. *MMWR.* 2008;57(RR-8)

Charlton MR, Gane E, Manns M, et al. Sofosbuvir and Ribavirin for the Treatment of Established Recurrent Hepatitis C Infection After Liver Transplantation: Preliminary Results of a Prospective,
Charlton MR. E-mail communication. August 14, 2014.

Corrao G, Arico S. Independent and combined action of hepatitis C virus infection and alcohol

Del Bello DP, Bichoupan K, Yalamanchili R et al. Real-world data on HIV positive patients with HCV genotype 1,2 and 3 on sofosbuvir- and simprevir containing regimens. [Abstract 994.] 65th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 7-1, 2014; Boston, MA.

Denniston MM, Jiles RB, Drobeniuc J, et al. Chronic hepatitis C virus infection in the United States,

Eron JJ, Young B, Cooper DA, et al. Switch to a raltegravir-based regimen versus continuation of a

Fontana RJ, Brown R, Herzer J et al. Daclatasvir (DCV) combined with sofosbuvir (SOF) or simeprevir (SMV) in liver transplant (LT) recipients with severe recurrent HCV genotype 1 infection. [Abstract P0791.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015; S629; Vienna, Austria.

Foster GR, McLauchlan J, Irving W et al. Treatment of decompensated HCV cirrhosis in patients with diverse genotypes: 12 weeks sofosbuvir and NS5A inhibitors with/without ribavirin is effective in HCV genotypes 1 and 3. [Abstract O002.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015b; Vienna, Austria.

Garraffo R, Poizot-Martin I, Piroth L et al. Pharmacokinetic (PK) interactions between Boceprevir (BOC) and Atazanavir/RTV (ATV/RTV) or Raltegravir (RAL) in HIV/HCV coinfected patients (pts). 14th International Workshop on Clinical Pharmacology on HIV Therapy. April 22-24, 2013; Amsterdam, the Netherlands.

Chronic HCV Genotype-1 Infection in Treatment-Naive Patients: Results From QUEST-1, a Phase III Trial. Digestive Disease Week. May 18-21, 2013a; Orlando, FL.

Jezequel C, Bardou-Jacquet E, Desille Y et al. Survival of patients infected by chronic hepatitis C and F0F1 fibrosis at baseline after a 15 year follow-up. 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015; S589; Vienna, Austria.

Kirby B, Mathias A, Rossi S, et al. No clinically significant pharmacokinetic drug interactions between sofosbuvir (GS-7977) and HIV antiretrovirals atripa, rilpivirine, darunavir/ritonavir, or raltegravir in healthy volunteers. 63rd Annual Meeting of the American Association of the Study of Liver Diseases (AASLD). November 9-11, 2012; Boston, MA.

Kleiner DE. The liver biopsy in chronic hepatitis C: a view from the other side of the microscope.

Kwo P, Gitlin N, Nahass R et al. A phase 3, randomised, open-labe study to evaluate the efficacy and safety of 8 and 12 weeks of simprevir (SMV) plus sofosbuvir (SOF) in treatment-naive and -experienced patients with chronic HCV genotype 1 infection without cirrhosis: OPTIMIST-1. 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S270; Vienna, Austria.

Lawitz E, Sulkowski MS, Ghalib R, et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet. 2014b;384(9956):1756-1765.

Lawitz E, Matusow G, DeJesus E et al. A phase 3, open-label, single-arm study to evaluate the efficacy and safety of 12 weeks of simeprevir (SMV) plus sofosbuvir (SOF) in treatment-naive or -experienced patients with chronic HCV genotype 1 infection and cirrhosis: OPTIMIST-2. 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S264; Vienna, Austria.

Mantry PS, Kwo PY, Coakley E et al. High sustained virologic response rates in liver transplant recipients with recurrent HCV genotype 1 infection receiving ABT-450/r/ombitasvir+dasabuvir plus ribavirin. [Abstract 198.] 65th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 7-11, 2014; Boston, MA.

Moreno C, Hezode C, Marcellin P et al. Simeprevir with peginterferon/ribavirin for treatment of chronic HCV genotype 4 infection in treatment-naïve or -experienced patients: interim results of a phase III trial. [Abstract 60.] Hep DAART. December 8-12, 2013a; Big Island, Hawaii

Nazario HE, Ndungu M, Modi A. Safety and efficacy of sofosbuvir + simeprevir without ribavirin in hepatitis C genotype 1-infected patients with end-stage renal disease or GFR <30 mL/min. [Abstract PO802.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S635; Vienna, Austria

Nelson DR, Cooper JN, Lalezari JP et al. All-oral 12-week combination treatment with daclatasvir (DCV) and sofosbuvir (SOF) in patients infected with HCV genotype (GT) 3: ALLY-3 phase 3 study. [Abstract LB-3.] 65th Annual Meeting of the American Association for the Study of Liver Diseases
Nelson D, Bernstein D, Freilich B et al. All-oral 12-week combination treatment with daclatasvir (DCV) and sofosbuvir (SOF) in treatment-experienced patients infected with HCV genotype (GT) 3: a subanalysis of ALLY-3 phase 2 study. [Abstract P0782.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S624; Vienna, Austria.

Øvrehus ALH, Blach S, Christensen PB et al. Impact of prioritizing treatment in a high resource setting - minimizing the burden of HCV related disease in 15 years. 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S591; Vienna, Austria.

Pockros PJ, Reddy KR, Mantry PS et al. Safety of ombitasvir/paritaprevir/ritonavir plus dasabuvir for treating HCV GT1 infection in patients with severe renal impairment or end-stage renal disease: the RUBY-1 study. [Abstract L01.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S257; Vienna, Austria.

Pol S, Bourliere M, Lucier S et al. Safety an efficacy of the combination daclatasvir-sofosbuvir in HCV genotype 1 mono-infected patients from the French observational cohort ANRS C022 hepather. [Abstract L03.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April 22-26, 2015;S258; Vienna, Austria.

Poordad F, Schiff ER, Vierling JM et al. Daclatasvir, sofosbuvir, and ribavirin combination for HCV patients with advanced cirrhosis or postransplant recurrence: phase 3 ALLY-1 study. [Abstract L08.] 50th Annual Meeting of the European Association for the Study of the Liver (EASL). April

Pungpapong S, Werner KT, Aqel B et al. Multicenter experience using sofosbuvir and simeprevir with/without ribavirin to treat HCV genotype 1 after liver transplantation. [Abstract 9.] 65th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 7-11, 2014; Boston, MA.

Ward JW. Testing for HCV: the first step in preventing disease transmission and improving health

Younossi ZM, Jiang Y, Smith NJ, Stepanova M, Beckerman R. Ledipasvir/sofosbuvir regimens for

Younossi ZM, Stepanova M, Henry L, et al. Effects of sofosbuvir-based treatment, with and without interferon, on outcome and productivity of patients with chronic hepatitis C. *Clin Gastroenterol Hepatol.* 2013; [Epub ahead of print]

Zeuzem S, Dusheiko GM, Salupere R. Sofosbuvir + ribavirin for 12 or 24 weeks for patients with HCV genotype 2 or 3: the VALENCE trial. [Abstract 1085.] 64th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD). November 1-5, 2013b;58:733A-734A; Washington, DC

WEBSITE POLICIES

Visitor's Agreement

Welcome to www.HCVguidelines.org, a service of the Guidance. Please read this Visitor's Agreement. By using this service, you agree to its terms.

By registering with HCVguidelines.org, or by using the service, you agree that we may use and disclose, as we see fit and as is consistent with applicable law, any information that you provide or we obtain concerning your use of the service. We may change the terms of this Agreement from time to time. By continuing to use the service after we post notice of any such changes, you agree to accept the new terms.

If you disagree with any material you find on our service, we invite you to bring to our attention the material you believe to be inaccurate. Please forward a copy of the material to us at stynes@aasld.org, along with an explanation of your objection or disagreement.

Medical Information Disclaimer

The information contained in HCVguidelines.org is presented primarily for the purpose of providing information for and educating physicians on HCV treatment and disease management topics. Nothing contained at HCVguidelines.org is intended to constitute a specific medical diagnosis, treatment, or recommendation. The information should not be considered complete, nor should it be relied on to suggest a course of treatment for a particular individual. It should not be used in place of a visit, call, consultation, or the advice of a physician or other qualified health care provider. Information obtained at HCVguidelines.org is not exhaustive and does not cover all complications, diseases, ailments, physical conditions, or their treatment with respect to HCV or any other disease. Patients who have any health care-related questions should call or see a physician or other qualified health care provider promptly. You should never disregard medical advice or delay seeking it because of something you have read at HCVguidelines.org.

The information contained at HCVguidelines.org is prepared by or compiled from a variety of sources. HCVguidelines.org, information providers, and sources do not directly or indirectly practice medicine or dispense medical services as a part of HCVguidelines.org. HCVguidelines.org may contain information about the investigational uses of drugs or products that are not approved by the U.S. Food and Drug
Administration. You should consult full prescribing information before using any information or product mentioned at HCVguidelines.org. By using HCVguidelines.org, you agree to the above terms.

Copyrights and Trademarks

HCVguidelines.org expects that you will not use the service to violate anyone's rights in copyrights, trademarks, or other intellectual property. By submitting material to HCVguidelines.org, you are either representing yourself as the owner of the material or making your submission with the explicit consent of the owner. Submitting material that is the property of another without the specific consent of its owner is not only a violation of this agreement, but may also subject you to legal liability for infringement of copyright, trademark or other intellectual property rights. The materials available through HCVguidelines.org are the property of the Guidance and its licensors, and are protected by copyright, trademark, and other intellectual property laws. You are welcome to display and print for your personal, non-commercial use information you receive through HCVguidelines.org. However, you may not otherwise reproduce any of the materials without the prior written consent of the owner. You may not distribute copies of materials found on HCVguidelines.org in any form—including by e-mail or other electronic means—without prior written permission from the owner. Of course, you are free to encourage others to access the information themselves on HCVguidelines.org and to tell them how to find it. Requests for permission to reproduce or distribute materials found on HCVguidelines.org should be submitted to copyright.com automated permissions service at [Get Permissions](#).

Trademarks: You may not use any trademark or service mark appearing on HCVguidelines.org without the prior written consent of the owner of the mark. HCVguidelines.org and the Guidance logo are trademarks of the Guidance.

We welcome links to our service. You are free to establish a hypertext link to this site so long as the link does not state or imply any sponsorship of your site by HCVguidelines.org or the Guidance.

No Framing: Without the prior written permission of the Guidance, you may not frame any of the content of HCVguidelines.org, or incorporate into another Web site or other service any intellectual property of HCVguidelines.org, the Guidance, or of their licensors. Requests for permission to frame our content may be sent to the Guidance either by e-mail or to the address above.

Disclaimer of Warranties and Liability

Please read this Disclaimer carefully before using HCVguidelines.org:

YOU AGREE THAT YOUR USE OF THIS SERVICE IS AT YOUR SOLE RISK. BECAUSE OF THE NUMBER OF POSSIBLE SOURCES OF INFORMATION AVAILABLE THROUGH THE SERVICE, AND THE INHERENT HAZARDS AND UNCERTAINITIES OF ELECTRONIC DISTRIBUTION, THERE MAY BE DELAYS, OMISSIONS, INACCURACIES OR OTHER PROBLEMS WITH SUCH INFORMATION. IF YOU RELY ON THIS SERVICE, OR ANY MATERIAL AVAILABLE THROUGH THIS SERVICE, YOU DO SO AT YOUR OWN RISK.

THIS SERVICE IS PROVIDED TO YOU "AS IS." HCVGUIDELINES.ORG, THE GUIDANCE, AND THEIR AFFILIATES, AGENTS, AND LICENSORS CANNOT AND DO NOT WARRANT THE ACCURACY, COMPLETENESS, NONINFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE OF THE INFORMATION AVAILABLE THROUGH THE SERVICE, NOR DO THEY GUARANTEE THAT THE SERVICE WILL BE ERROR-FREE, OR CONTINUOUSLY AVAILABLE, OR THAT THE SERVICE WILL BE FREE OF VIRUSES OR OTHER HARMFUL COMPONENTS. UNDER NO CIRCUMSTANCES SHALL HCVGUIDELINES.ORG, THE GUIDANCE, OR THEIR
AFFILIATES, AGENTS OR LICENSORS BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DAMAGES OTHER THAN DIRECT DAMAGES. THIS PROVISION INCLUDES, WITHOUT LIMITATION, ANY LIABILITY FOR CONSEQUENTIAL, SPECIAL, INCIDENTAL, INDIRECT OR SIMILAR DAMAGES, EVEN IF WE ARE ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES. YOU AGREE THAT THE LIABILITY OF HCVGUIDELINES.ORG, THE GUIDANCE, AND THEIR AFFILIATES, AGENTS, AND LICENSORS, IF ANY, ARISING OUT OF ANY KIND OF LEGAL CLAIM IN ANY WAY CONNECTED TO THE SERVICE, SHALL NOT EXCEED THE AMOUNT YOU PAID TO THE SERVICE FOR THE USE OF THE SERVICE.

By using HCVguidelines.org, you agree to abide by the terms of this Visitor's Agreement. We hope you enjoy using HCVguidelines.org, and we welcome suggestions for improvements.